Search

found 14 results

Images, UC QuakeStudies

A digitally manipulated image of the head of a digger resting on a pile of soil. The photographer comments, "You can go anywhere you like when you are a rock star".

Images, UC QuakeStudies

A digitally manipulated image of an excavator demolishing a house. The photographer comments, "My neighbour I thought was going to be one of the first to be rebuilt in the area after being damaged in the 22 February 2011 earthquake, but the builders have knocked it down and not returned yet".

Images, UC QuakeStudies

The head of a digger resting on a pile of soil next to QEII Stadium. The photographer comments, "The deconstruction of the QEII stadium in Christchurch pauses on a Sunday".

Images, UC QuakeStudies

A digitally manipulated image of an excavator. The photographer comments, "This is a huge excavator in the Christchurch CBD. It is being used to clear away the enormous amount of rubble from the buildings being demolished. It seems that nearly all the big machinery from all other the world has been needed in the clean up of the earthquake damaged buildings and utilities".

Images, Alexander Turnbull Library

Shows rain falling over two gondolas of people floating past flooded Christchurch damaged houses. One person points to people in balaclavas climbing over the houses and calls out 'And look...the wildlife's returning!'. Context: Heavy rain and flooding hit Christchurch suburbs, including earthquake damaged homes (Newstalk website 14 August 2012). At the same time, wildlife (possums and rare birds) are moving into abandoned suburbs (Stuff 13 August 2012) Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

The Christchurch earthquake sequence has been on-going since September 4th 2010. The largest two earthquakes, magnitude (M) 7.1 on September 4th and the M 6.3 on February 22nd 2011 caused immediate and significant damage to the city of Christchurch. As a consequence of the earthquakes, the tourism sector in the Canterbury region has been heavily impacted, with broader impacts being felt throughout the South Island. Resilient Organisations and the University of Canterbury began a series of quantitative investigations into the recovery and response of key business sectors to the earthquakes. The purpose of this study was to build on this work by exploring the outcomes of the earthquakes on the tourism sector, a critical economic driver in the region. Two postal surveys were sent to 719 tourism business managers; the first to businesses in the ‘Impact Zone’ defined as areas that experienced Modified Mercalli intensities greater than 6. The second survey was sent to the remaining businesses throughout the Canterbury region (‘Rest of Canterbury’). Response rates were 46% response for the Impact Zone, and 29% for the Rest of Canterbury. Key findings:

Research papers, University of Canterbury Library

The recent earthquakes in Christchurch have made it clear that issues exist with current RC frame design in New Zealand. In particular, beam elongation in RC frame buildings was widespread and resulted in numerous buildings being rendered irreparable. Design solutions to overcome this problem are clearly needed, and the slotted beam is one such solution. This system has a distinct advantage over other damage avoidance design systems in that it can be constructed using current industry techniques and conventional reinforcing steel. As the name suggests, the slotted beam incorporates a vertical slot along part of the beam depth at the beam-column interface. Geometric beam elongation is accommodated via opening and closing of these slots during seismically induced rotations, while the top concrete hinge is heavily reinforced to prevent material inelastic elongation. Past research on slotted beams has shown that the bond demand on the bottom longitudinal reinforcement is increased compared with equivalent monolithic systems. Satisfying this increased bond demand through conventional means may yield impractical and economically less viable column dimensions. The same research also indicated that the joint shear mechanism was different to that observed within monolithic joints and that additional horizontal reinforcement was required as a result. Through a combination of theoretical investigation, forensic analysis, and database study, this research addresses the above issues and develops design guidelines. The use of supplementary vertical joint stirrups was investigated as a means of improving bond performance without the need for non-standard reinforcing steel or other hardware. These design guidelines were then validated experimentally with the testing of two 80% scale beam-column sub-assemblies. The revised provisions for bond within the bottom longitudinal reinforcement were found to be adequate while the top longitudinal reinforcement remained nominally elastic throughout both tests. An alternate mechanism was found to govern joint shear behaviour, removing the need for additional horizontal joint reinforcement. Current NZS3101:2006 joint shear reinforcement provisions were found to be more than adequate given the typically larger column depths required rendering the strut mechanism more effective. The test results were then used to further refine design recommendations for practicing engineers. Finally, conclusions and future research requirements were outlined.