SCIRT Geographic Information System (GIS) Viewer - a window to central data
Articles, UC QuakeStudies
A document which describes SCIRT's Geographic Information System (GIS) Viewer.
A document which describes SCIRT's Geographic Information System (GIS) Viewer.
None
Photo manual and guide provided to design and delivery teams at SCIRT.
In this paper Paul Millar outlines the development of the University of Canterbury Quakebox project, a collaborative venture between the UC CEISMIC Canterbury Earthquakes Digital Archive and the New Zealand Institute of Language Brain and Behaviour to preserve people’s earthquake stories for the purposes of research, teaching and commemoration. The project collected over 700 stories on high definition video, and Millar is now looking at using the corpus to underpin a longitudinal study of post-quake experience.
This paper identifies and analyses the networks of support for tangata whaiora (mental health clients) utilising a kaupapa Mäori health service following the Ötautahi/Christchurch earthquakes in Aotearoa New Zealand from 2010 to 2012. Semi- structured interviews were undertaken with 39 participants, comprising clients (Mäori and Päkehä), staff, managers and board members of a kaupapa Mäori provider in the city. Selected quotes are presented alongside a social network analysis of the support accessed by all participants. Results show the signifi cant isolation of both Mäori and Päkehä mental health clients post- disaster and the complexity of individuals and collectives dealing with temporally and spatially overlapping hazards and disasters at personal, whänau and community level.
Natural hazard disasters often have large area-wide impacts, which can cause adverse stress-related mental health outcomes in exposed populations. As a result, increased treatment-seeking may be observed, which puts a strain on the limited public health care resources particularly in the aftermath of a disaster. It is therefore important for public health care planners to know whom to target, but also where and when to initiate intervention programs that promote emotional wellbeing and prevent the development of mental disorders after catastrophic events. A large body of literature assesses factors that predict and mitigate disaster-related mental disorders at various time periods, but the spatial component has rarely been investigated in disaster mental health research. This thesis uses spatial and spatio-temporal analysis techniques to examine when and where higher and lower than expected mood and anxiety symptom treatments occurred in the severely affected Christchurch urban area (New Zealand) after the 2010/11 Canterbury earthquakes. High-risk groups are identified and a possible relationship between exposure to the earthquakes and their physical impacts and mood and anxiety symptom treatments is assessed. The main research aim is to test the hypothesis that more severely affected Christchurch residents were more likely to show mood and anxiety symptoms when seeking treatment than less affected ones, in essence, testing for a dose-response relationship. The data consisted of mood and anxiety symptom treatment information from the New Zealand Ministry of Health’s administrative databases and demographic information from the National Health Index (NHI) register, when combined built a unique and rich source for identifying publically funded stress-related treatments for mood and anxiety symptoms in almost the whole population of the study area. The Christchurch urban area within the Christchurch City Council (CCC) boundary was the area of interest in which spatial variations in these treatments were assessed. Spatial and spatio-temporal analyses were done by applying retrospective space-time and spatial variation in temporal trends analysis using SaTScan™ software, and Bayesian hierarchical modelling techniques for disease mapping using WinBUGS software. The thesis identified an overall earthquake-exposure effect on mood and anxiety symptom treatments among Christchurch residents in the context of the earthquakes as they experienced stronger increases in the risk of being treated especially shortly after the catastrophic 2011 Christchurch earthquake compared to the rest of New Zealand. High-risk groups included females, elderly, children and those with a pre-existing mental illness with elderly and children especially at-risk in the context of the earthquakes. Looking at the spatio-temporal distribution of mood and anxiety symptom treatments in the Christchurch urban area, a high rates cluster ranging from the severely affected central city to the southeast was found post-disaster. Analysing residential exposure to various earthquake impacts found that living in closer proximity to more affected areas was identified as a risk factor for mood and anxiety symptom treatments, which largely confirms a dose-response relationship between level of affectedness and mood and anxiety symptom treatments. However, little changes in the spatial distribution of mood and anxiety symptom treatments occurred in the Christchurch urban area over time indicating that these results may have been biased by pre-existing spatial disparities. Additionally, the post-disaster mobility activity from severely affected eastern to the generally less affected western and northern parts of the city seemed to have played an important role as the strongest increases in treatment rates occurred in less affected northern areas of the city, whereas the severely affected eastern areas tended to show the lowest increases. An investigation into the different effects of mobility confirmed that within-city movers and temporary relocatees were generally more likely to receive care or treatment for mood or anxiety symptoms, but moving within the city was identified as a protective factor over time. In contrast, moving out of the city from minor, moderately or severely damaged plain areas of the city, which are generally less affluent than Port Hills areas, was identified as a risk factor in the second year post-disaster. Moreover, residents from less damaged plain areas of the city showed a decrease in the likelihood of receiving care or treatment for mood or anxiety symptoms compared to those from undamaged plain areas over time, which also contradicts a possible dose-response relationship. Finally, the effects of the social and physical environment, as well as community resilience on mood and anxiety symptom treatments among long-term stayers from Christchurch communities indicate an exacerbation of pre-existing mood and anxiety symptom treatment disparities in the city, whereas exposure to ‘felt’ earthquake intensities did not show a statistically significant effect. The findings of this thesis highlight the complex relationship between different levels of exposure to a severe natural disaster and adverse mental health outcomes in a severely affected region. It is one of the few studies that have access to area-wide health and impact information, are able to do a pre-disaster / post-disaster comparison and track their sample population to apply spatial and spatio-temporal analysis techniques for exposure assessment. Thus, this thesis enhances knowledge about the spatio-temporal distribution of adverse mental health outcomes in the context of a severe natural disaster and informs public health care planners, not only about high-risk groups, but also where and when to target health interventions. The results indicate that such programs should broadly target residents living in more affected areas as they are likely to face daily hardship by living in a disrupted environment and may have already been the most vulnerable ones before the disaster. Special attention should be focussed on women, elderly, children and people with pre-existing mental illnesses as they are most likely to receive care or treatment for stress-related mental health symptoms. Moreover, permanent relocatees from affected areas and temporarily relocatees shortly after the disaster may need special attention as they face additional stressors due to the relocation that may lead to the development of adverse mental health outcomes needing treatment.
This article discusses the use of radio after major earthquakes in Christchurch, New Zealand, in 2010 and 2011. It draws on archival sources to retrospectively research post-quake audiences in the terms people used during and soon after the earthquakes through personal narratives and Twitter. Retrospective narratives of earthquake experiences affirm the value of radio for communicating the scale of disaster and comforting listeners during dislocation from safe home spaces. In the narratives radio is often compared with television, which signifies electricity supply and associated comfort but also visually confirms the city’s destruction. Twitter provides insights into radio use from within the disaster period, but its more global reach facilitates reflection on online and international radio from outside the disaster-affected area. This research demonstrates the value of archival audience research, and finds that the combination of online radio and Twitter enables a new form of participatory disaster spectatorship from afar.
This report provides an initial overview and gap analysis of the multi-hazards interactions that might affect fluvial and pluvial flooding (FPF) hazard in the Ōpāwaho Heathcote catchment. As per the terms of reference, this report focuses on a one-way analysis of the potential effects of multi-hazards on FPF hazard, as opposed to a more complex multi-way analysis of interactions between all hazards. We examined the relationship between FPF hazard and hazards associated with the phenomena of tsunamis; coastal erosion; coastal inundation; groundwater; earthquakes; and mass movements. Tsunamis: Modelling research indicates the worst-case tsunami scenarios potentially affecting the Ōpāwaho Heathcote catchment are far field. Under low probability, high impact tsunami scenarios waves could travel into Pegasus Bay and the Avon-Heathcote Estuary Ihutai, reaching the mouth and lower reaches of the Heathcote catchment and river, potentially inundating and eroding shorelines in sub-catchments 1 to 5, and temporarily blocking fluvial drainage more extensively. Any flooding infrastructure or management actions implemented in the area of tsunami inundation would ideally be resilient to tsunami-induced inundation and erosion. Model results currently available are a first estimate of potential tsunami inundation under contemporary sea and land level conditions. In terms of future large tsunami events, these models likely underestimate effects in riverside sub-catchments, as well as effects under future sea level, shoreline and other conditions. Also of significance when considering different FPF management structures, it is important to be mindful that certain types of flood structures can ‘trap’ inundating water coming from ocean directions, leading to longer flood durations and salinization issues. Coastal erosion: Model predictions indicate that sub-catchments 1 to 3 could potentially be affected by coastal erosion by the timescale of 2065, with sub-catchments 1-6 predicted to be potentially affected by coastal erosion by the time scale of 2115. In addition, the predicted open coast effects of this hazard should not be ignored since any significant changes in the New Brighton Spit open coast would affect erosion rates and exposure of the landward estuary margins, including the shorelines of the Ōpāwaho Heathcote catchment. Any FPF flooding infrastructure or management activities planned for the potentially affected sub-catchments needs to recognise the possibility of coastal erosion, and to have a planned response to the predicted potential shoreline translation. Coastal inundation: Model predictions indicate coastal inundation hazards could potentially affect sub-catchments 1 to 8 by 2065, with a greater area and depth of inundation possible for these same sub-catchments by 2115. Low-lying areas of the Ōpāwaho Heathcote catchment and river channel that discharge into the estuary are highly vulnerable to coastal inundation since elevated ocean and estuary water levels can block the drainage of inland systems, compounding FPF hazards. Coastal inundation can overwhelm stormwater and other drainage network components, and render river dredging options ineffective at best, flood enhancing at worst. A distinction can be made between coastal inundation and coastal erosion in terms of the potential impacts on affected land and assets, including flood infrastructure, and the implications for acceptance, adaptation, mitigation, and/or modification options. That is, responding to inundation could include structural and/or building elevation solutions, since unlike erosion, inundation does not necessarily mean the loss of land. Groundwater: Groundwater levels are of significant but variable concern when examining flooding hazards and management options in the Ōpāwaho Heathcote catchment due to variability in soils, topographies, elevations and proximities to riverine and estuarine surface waterbodies. Much of the Canterbury Plains part of the Ōpāwaho Heathcote catchment has a water table that is at a median depth of <1m from the surface (with actual depth below surface varying seasonally, inter-annually and during extreme meteorological events), though the water table depth rapidly shifts to >6m below the surface in the upper Plains part of the catchment (sub-catchments 13 to 15). Parts of Waltham/Linwood (sub-catchments 5 & 6) and Spreydon (sub-catchment 10) have extensive areas with a particularly high water table, as do sub-catchments 18, 19 and 20 south of the river. In all of the sub-catchments where groundwater depth below surface is shallow, it is necessary to be mindful of cascading effects on liquefaction hazard during earthquake events, including earthquake-induced drainage network and stormwater infrastructure damage. In turn, subsidence induced by liquefaction and other earthquake processes during the CES directly affected groundwater depth below surface across large parts of the central Ōpāwaho Heathcote catchment. The estuary margin of the catchment also faces increasing future challenges with sea level rise, which has the potential to elevate groundwater levels in these areas, compounding existing liquefaction and other earthquake associated multi-hazards. Any increases in subsurface runoff due to drainage system, development or climate changes are also of concern for the loess covered hill slopes due to the potential to enhance mass movement hazards. Earthquakes: Earthquake associated vertical ground displacement and liquefaction have historically affected, or are in future predicted to affect, all Ōpāwaho Heathcote sub-catchments. During the CES, these phenomena induced a significant cascades of changes in the city’s drainage systems, including: extensive vertical displacement and liquefaction induced damage to stormwater ‘greyware’, reducing functionality of the stormwater system; damage to the wastewater system which temporarily lowered groundwater levels and increased stormwater drainage via the wastewater network on the one hand, creating a pollution multi-hazard for FPF on the other hand; liquefaction and vertical displacement induced river channel changes affected drainage capacities; subsidence induced losses in soakage and infiltration capacities; changes occurred in topographic drainage conductivity; estuary subsidence (mainly around the Ōtākaro Avon rivermouth) increased both FPF and coastal inundation hazards; estuary bed uplift (severe around the Ōpāwaho Heathcote margins), reduced tidal prisms and increased bed friction, producing an overall reduction the waterbody’s capacity to efficiently flush catchment floodwaters to sea; and changes in estuarine and riverine ecosystems. All such possible effects need to be considered when evaluating present and future capacities of the Ōpāwaho Heathcote catchment FPF management systems. These phenomena are particularly of concern in the Ōpāwaho Heathcote catchment since stormwater networks must deal with constraints imposed by stream and river channels (past and present), estuarine shorelines and complex hill topography. Mass movements: Mass movements are primarily a risk in the Port Hills areas of the Ōpāwaho Heathcote catchment (sub-catchments 1, 2, 7, 9, 11, 16, 21), though there are one or two small but susceptible areas on the banks of the Ōpāwaho Heathcote River. Mass movements in the form of rockfalls and debris flows occurred on the Port Hills during the CES, resulting in building damage, fatalities and evacuations. Evidence has also been found of earthquake-triggered tunnel gully collapsesin all Port Hill Valleys. Follow-on effects of these mass movements are likely to occur in major future FPF and other hazard events. Of note, elevated groundwater levels, coastal inundation, earthquakes (including liquefaction and other effects), and mass movement exhibit the most extensive levels of multi-hazard interaction with FPF hazard. Further, all of the analysed multi-hazard interactions except earthquakes were found to consistently produce increases in the FPF hazard. The implications of these analyses are that multihazard interactions generally enhance the FPF hazard in the Ōpāwaho Heathcote catchment. Hence, management plans which exclude adjustments for multi-hazard interactions are likely to underestimate the FPF hazard in numerous different ways. In conclusion, although only a one-way analysis of the potential effects of selected multi-hazards on FPF hazard, this review highlights that the Ōpāwaho Heathcote catchment is an inherently multi- hazard prone environment. The implications of the interactions and process linkages revealed in this report are that several significant multi-hazard influences and process interactions must be taken into account in order to design a resilient FPF hazard management strategy.
Interagency Emergency Response Teams (IERTs) play acrucial role in times of disasters. Therefore it is crucial to understand more thoroughly the communication roles and responsibilities of interagency team members and to examine how individual members communicate within a complex, evolving, and unstable environment. It is also important to understand how different organisational identities and their spatial geographies contribute to the interactional dynamics. Earthquakes hit the Canterbury region on September, 2010 and then on February 2011 a more devastating shallow earthquake struck resulting in severe damage to the Aged Residential Care (ARC) sector. Over 600 ARC beds were lost and 500 elderly and disabled people were displaced. Canterbury District Health Board (CDHB) set up an interagency emergency response team to address the issues of vulnerable people with significant health and disability needs who were unable to access their normal supports due to the effects of the earthquake. The purpose of this qualitative interpretive study is to focus on the case study of the response and evacuation of vulnerable people by interagencies responding to the event. Staff within these agencies were interviewed with a focus on the critical incidents that either stabilised or negatively influenced the outcome of the response. The findings included the complexity of navigating multiple agencies communication channels; understanding the different hierarchies and communication methods within each agency; data communication challenges when infrastructures were severely damaged; the importance of having the right skills, personal attributes and understanding of the organisations in the response; and the significance of having a liaison in situ representing and communicating through to agencies geographically dispersed from Canterbury. It is hoped that this research will assist in determining a future framework for interagency communication best practice and policy.
In 2013 Becca Wood, Spatial Performance Practitioner, and Molly Mullen, Applied Theatre Practitioner, collaborated to create a short ambulatory performance with audio score for a group of drama educators attending a conference workshop on the possibilities of walking as performance. The performance was created remotely from the intended site: Rangi Ruru Girls’ School, in Christchurch, New Zealand. Following the destruction of the 2012 earthquake, this site was in a state of transformation and recovery. The performance walk attended to the histories, geographies and politics of this place, somatically, architecturally and socially. This paper engages with three critical questions: How might mediated listening and walking activate the coming together of bodies and place? What performative shifts occurred for the participants in the walk and workshop? How might we come to our senses? Through a performative practice of mediated site-based listening and walking, this paper is a reflection on the creative process and performance. We consider the potential for technologically mediated performance to offer new modes for learning and creative practice through interdisciplinary and evolving intermedial practices. http://www.tandfonline.com/toc/crde20/current AM - Accepted Manuscript
The last seven years have seen southern New Zealand a ected by several large and damaging earthquakes: the moment magnitude (MW) 7.8 Dusky Sound earthquake on 15 July 2009, the MW 7.1 Dar eld (Canterbury) earthquake on 4 September 2010, and most notably the MW 6.2 Christchurch earthquake on 22 February 2011 and the protracted aftershock sequence. In this thesis, we address the postseismic displacement produced by these earthquakes using methods of satellite-based geodetic measurement, known as Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS), and computational modelling. We observe several ground displacement features in the Canterbury and Fiordland regions during three periods: 1) Following the Dusky Sound earthquake; 2) Following the Dar eld earthquake and prior to the Christchurch earthquake; and 3) Following the Christchurch earthquake until February 2015. The ground displacement associated with postseismic motion following the Dusky Sound earthquake has been measured by continuous and campaign GPS data acquired in August 2009, in conjunction with Di erential Interferometric Synthetic Aperture Radar (DInSAR) observations. We use an afterslip model, estimated by temporal inversion of geodetic data, with combined viscoelastic rebound model to account for the observed spatio-temporal patterns of displacement. The two postseismic processes together induce a signi cant displacement corresponding to principal extensional and contractual strain rates of the order of 10⁻⁷ and 10⁻⁸ yr⁻¹ respectively, across most of the southern South Island. We also analyse observed postseismic displacement following the Dusky Sound earthquake using a new inversion approach in order to describe afterslip in an elasticviscoelastic medium. We develop a mathematical framework, namely the "Iterative Decoupling of Afterslip and Viscoelastic rebound (IDAV)" method, with which to invert temporally dense and spatially sparse geodetic observations. We examine the IDAV method using both numerical and analytical simulations of Green's functions. For the post-Dar eld time interval, postseismic signals are measured within approximately one month of the mainshock. The dataset used for the post-Dar eld displacement spans the region surrounding previously unrecognised faults that ruptured during the mainshock. Poroelastic rebound in a multi-layered half-space and dilatancy recovery at shallow depths provide a satisfactory t with the observations. For the post-Christchurch interval, campaign GPS data acquired in February 2012 to February 2015 in four successive epochs and 66 TerraSAR-X (TSX) SAR acquisitions in descending orbits between March 2011 and May 2014 reveal approximately three years of postseismic displacement. We detect movement away from the satellite of ~ 3 mm/yr in Christchurch and a gradient of displacement of ~ 4 mm/yr across a lineament extending from the westernmost end of the Western Christchurch Fault towards the eastern end of the Greendale East Fault. The postseismic signals following the Christchurch earthquake are mainly accounted for by afterslip models on the subsurface lineament and nearby faults.