Search

found 7 results

Research papers, University of Canterbury Library

Programme interventions for people who have experienced natural disasters are limited. To investigate whether Group Teen Positive Parenting (GTPPP) programme promoted family functioning in the aftermath of disaster, 14 parents and nine adolescents, self-reported measures of family functioning and adjustment prior to and after the intervention. It was found that GTPPP enhanced parenting competence, parental wellbeing, decreased conflict between parents and their adolescents. These findings suggest that GTPPP may provide a practical way of supporting families after a natural disaster.

Research papers, University of Canterbury Library

Tsunami have the potential to cause significant disruptions to society, including damage to infrastructure, critical to the every-day operation of society. Effective risk management is required to reduce the potential tsunami impacts to them. Christchurch city, situated on the eastern coast of New Zealand’s South Island, is exposed to a number of far-field tsunami hazards. Although the tsunami hazard has been well identified for Christchurch city infrastructure, the likely impacts have not been well constrained. To support effective risk management a credible and realistic infrastructure impact model is required to inform risk management planning. The objectives of this thesis are to assess the impacts on Christchurch city infrastructure from a credible, hypothetical far-field tsunami scenario. To achieve this an impact assessment process is adopted, using tsunami hazard and exposure measures to determine asset vulnerability and subsequent impacts. However, the thesis identified a number of knowledge gaps in infrastructure vulnerability to tsunami. The thesis addresses this by using two approaches: a tsunami damage matrix; and the development of tsunami fragility functions. The tsunami damage matrix pools together tsunami impacts on infrastructure literature, and post-event field observations. It represents the most comprehensive ‘look-up’ resource for tsunami impacts to infrastructure to date. This damage matrix can inform the assessment of tsunami impacts on Christchurch city infrastructure by providing a measure of damage likelihood at various hazard intensities. A more robust approach to tsunami vulnerability of infrastructure are fragility functions, which are also developed in this thesis. These were based on post-event tsunami surveys of the 2011 ‘Tohoku’ earthquake tsunami in Japan. The fragility functions are limited to road and bridge infrastructure, but represent the highest resolution measure of vulnerability for the given assets. As well as providing a measure of damage likelihood for a given tsunami hazard intensity, these also indicate a level of asset damage. The impact assessment process, and synthesized vulnerability measures, are used to run tsunami impact models for Christchurch infrastructure to determine the probability of asset damage occurring and to determine if impact will reach or exceed a given damage state. The models suggest that infrastructure damage is likely to occur in areas exposed to tsunami inundation in this scenario, with significant damage identified for low elevation roads and bridges. The results are presented and discussed in the context of the risk management framework, with emphasis on using risk assessment to inform risk treatment, monitoring and review. In summary, this thesis A) advances tsunami vulnerability and impact assessment methodologies for infrastructure and B) provides a tsunami impact assessment framework for Christchurch city infrastructure which will inform infrastructure tsunami risk management for planners, emergency managers and lifelines groups.

Research papers, University of Canterbury Library

In this dissertation it is argued that the Canterbury Earthquake Recovery Act 2011 and the Canterbury Earthquake Recovery Authority were both necessary and inevitable given the trends and traditions of civil defence emergency management (CDEM) in New Zealand. The trends and traditions of civil defence are such that principles come before practice, form before function, and change is primarily brought about through crisis and criticism. The guiding question of the research was why were a new governance system and law made after the Canterbury earthquakes in 2010 and 2011? Why did this outcome occur despite the establishment of a modern emergency management system in 2002 which included a recovery framework that had been praised by international scholars as leading edge and a model for other countries? The official reason was the unprecedented scale and demands of the recovery – but a disaster of such scale is the principle reason for having a national emergency management system. Another explanation is the lack of cooperation among local authorities – but that raises the question of whether the CDEM recovery framework would have been successful in another locality. Consequentially, the focus of this dissertation is on the CDEM recovery framework and how New Zealand came to find itself making disaster law during a disaster. Recommendations include a review of emergency powers for recovery, a review of the capabilities needed to fulfil the mandate of Recovery Managers, and the establishment of a National Recovery Office with a cadre of Recovery Managers that attend every recovery to observe, advise, or assume control as needed. CDEM Group Recovery Managers would be seconded to the National Recovery Office which would allow for experience in recovery management to be developed and institutionalised through regular practice.

Research papers, University of Canterbury Library

Previous research has found that the capacity to self-regulate is associated with a number of positive life outcomes and deficits in self-regulation have been linked with poorer life outcomes. Therefore, parent and child self-regulation is an important focus of the Positive Parenting Program for Teenagers (Teen Triple P). The aim of this study was to investigate if Group Teen Triple P was effective in promoting parental self-regulation and adolescent behaviour change in families affected by the earthquakes in Canterbury NZ between 2010 and 2012. METHOD: Five families with teenagers aged 12-16 years were recruited from among families participating in a Group Teen Triple P program specifically implemented by the education authorities for parents self-reporting long-term negative effects of the earthquakes on their family. A single-case multiple-baseline across participants design was used to examine change in target teenager behaviour. Measures of self-regulation skill acquisition were taken using a coding scheme devised for the study from transcripts of three telephone consultations and from three family discussions at pre-intervention, mid-intervention, and post-intervention. Parents and their child also completed questionnaires addressing adolescent functioning, the parent-adolescent relationship and parenting at pre- and post-intervention. RESULTS: The multiple-baseline data showed that parents were successful at changing targeted behaviour for their child. Analysis of the telephone consultations and family discussions showed that parents increased their self-regulation skills over the therapy period and there was positive change in adolescent behavior reported on the Strengths and Difficulties Questionnaire. Additionally, the results suggested that higher rates and levels of self-regulation in the parents were associated with greater improvements in adolescent behaviour. CONCLUSION: This study demonstrated that the Group Teen Triple P -Program was effective in promoting self-regulation in parents and behaviour change in adolescents, specifically in a post-disaster context.

Research papers, University of Canterbury Library

This thesis explores how social entrepreneurship develops following a crisis. A review of literature finds that despite more than 15 years of academic attention, a common definition of social entrepreneurship remains elusive, with the field lacking the unified framework to set it apart as a specialised field of study. There are a variety of different conceptualisations of how social entrepreneurship works, and what it aims to achieve. The New Zealand context for social entrepreneurship is explored, finding that it receives little attention from the government and education sectors, despite its enormous potential. A lack of readily available information on social entrepreneurship leads most studies to investigate it as a phenomenon, and given the unique context of this research, it follows suit. Following from several authors’ recommendations that social entrepreneurship be subjected to further exploration, this is an exploratory, inductive study. A multiple case study is used to explore how social entrepreneurship develops following a natural disaster, using the example of the February 2011 earthquake in Christchurch, New Zealand. With little existing theory in this research area, this method is used to provide interesting examples of how the natural disaster, recognised as a crisis, can lead to business formation. Findings revealed the crisis initially triggered an altruistic response from social entrepreneurs, leading them to develop newly highlighted opportunities that were related to fields in which they had existing skills and expertise. In the process of developing these opportunities, initial altruistic motivations faded, with a new focus on the pursuit of a social mission and aims for survival and growth. The social missions addressed broad issues, and while they did address the crisis to differing extents, they were not confined to addressing its consequences. A framework is presented to explain how social entrepreneurship functions, once triggered in response to crisis. This framework supports existing literature that depicts social entrepreneurship as a continuous process, and illustrates the effects of a crisis as the catalyst for social business formation. In the aftermath of a crisis, when resources are likely to be scarce, social entrepreneurs play a significant role in the recovery process and their contributions should be highly valued both by government and relevant disaster response bodies. Policies that support social entrepreneurs and their ventures should be considered in the same way as commercial ventures.

Research Papers, Lincoln University

Liquefaction features and the geologic environment in which they formed were carefully studied at two sites near Lincoln in southwest Christchurch. We undertook geomorphic mapping, excavated trenches, and obtained hand cores in areas with surficial evidence for liquefaction and areas where no surficial evidence for liquefaction was present at two sites (Hardwick and Marchand). The liquefaction features identified include (1) sand blows (singular and aligned along linear fissures), (2) blisters or injections of subhorizontal dikes into the topsoil, (3) dikes related to the blows and blisters, and (4) a collapse structure. The spatial distribution of these surface liquefaction features correlates strongly with the ridges of scroll bars in meander settings. In addition, we discovered paleoliquefaction features, including several dikes and a sand blow, in excavations at the sites of modern liquefaction. The paleoliquefaction event at the Hardwick site is dated at A.D. 908-1336, and the one at the Marchand site is dated at A.D. 1017-1840 (95% confidence intervals of probability density functions obtained by Bayesian analysis). If both events are the same, given proximity of the sites, the time of the event is A.D. 1019-1337. If they are not, the one at the Marchand site could have been much younger. Taking into account a preliminary liquefaction-triggering threshold of equivalent peak ground acceleration for an Mw 7.5 event (PGA7:5) of 0:07g, existing magnitude-bounded relations for paleoliquefaction, and the timing of the paleoearthquakes and the potential PGA7:5 estimated for regional faults, we propose that the Porters Pass fault, Alpine fault, or the subduction zone faults are the most likely sources that could have triggered liquefaction at the study sites. There are other nearby regional faults that may have been the source, but there is no paleoseismic data with which to make the temporal link.

Research papers, University of Canterbury Library

Sewerage systems convey sewage, or wastewater, from residential or commercial buildings through complex reticulation networks to treatment plants. During seismic events both transient ground motion and permanent ground deformation can induce physical damage to sewerage system components, limiting or impeding the operability of the whole system. The malfunction of municipal sewerage systems can result in the pollution of nearby waterways through discharge of untreated sewage, pose a public health threat by preventing the use of appropriate sanitation facilities, and cause serious inconvenience for rescuers and residents. Christchurch, the second largest city in New Zealand, was seriously affected by the Canterbury Earthquake Sequence (CES) in 2010-2011. The CES imposed widespread damage to the Christchurch sewerage system (CSS), causing a significant loss of functionality and serviceability to the system. The Christchurch City Council (CCC) relied heavily on temporary sewerage services for several months following the CES. The temporary services were supported by use of chemical and portable toilets to supplement the damaged wastewater system. The rebuild delivery agency -Stronger Christchurch Infrastructure Rebuild Team (SCIRT) was created to be responsible for repair of 85 % of the damaged horizontal infrastructure (i.e., water, wastewater, stormwater systems, and roads) in Christchurch. Numerous initiatives to create platforms/tools aiming to, on the one hand, support the understanding, management and mitigation of seismic risk for infrastructure prior to disasters, and on the other hand, to support the decision-making for post-disaster reconstruction and recovery, have been promoted worldwide. Despite this, the CES in New Zealand highlighted that none of the existing platforms/tools are either accessible and/or readable or usable by emergency managers and decision makers for restoring the CSS. Furthermore, the majority of existing tools have a sole focus on the engineering perspective, while the holistic process of formulating recovery decisions is based on system-wide approach, where a variety of factors in addition to technical considerations are involved. Lastly, there is a paucity of studies focused on the tools and frameworks for supporting decision-making specifically on sewerage system restoration after earthquakes. This thesis develops a decision support framework for sewerage pipe and system restoration after earthquakes, building on the experience and learning of the organisations involved in recovering the CSS following the CES in 2010-2011. The proposed decision support framework includes three modules: 1) Physical Damage Module (PDM); 2) Functional Impact Module (FIM); 3) Pipeline Restoration Module (PRM). The PDM provides seismic fragility matrices and functions for sewer gravity and pressure pipelines for predicting earthquake-induced physical damage, categorised by pipe materials and liquefaction zones. The FIM demonstrates a set of performance indicators that are categorised in five domains: structural, hydraulic, environmental, social and economic domains. These performance indicators are used to assess loss of wastewater system service and the induced functional impacts in three different phases: emergency response, short-term recovery and long-term restoration. Based on the knowledge of the physical and functional status-quo of the sewerage systems post-earthquake captured through the PDM and FIM, the PRM estimates restoration time of sewer networks by use of restoration models developed using a Random Forest technique and graphically represented in terms of restoration curves. The development of a decision support framework for sewer recovery after earthquakes enables decision makers to assess physical damage, evaluate functional impacts relating to hydraulic, environmental, structural, economic and social contexts, and to predict restoration time of sewerage systems. Furthermore, the decision support framework can be potentially employed to underpin system maintenance and upgrade by guiding system rehabilitation and to monitor system behaviours during business-as-usual time. In conjunction with expert judgement and best practices, this framework can be moreover applied to assist asset managers in targeting the inclusion of system resilience as part of asset maintenance programmes.