Search

found 12 results

Videos, UC QuakeStudies

A video of an interview with New Zealand Fire Service Chief Executive and National Commander Paul Baxter, about the findings of the coronial inquest into the CTV building deaths. Coroner Gordon Matenga found that failures by the Fire Service and Urban Search and Rescue did not contribute to the deaths of eight students at the CTV site in the aftermath of the 22 February 2011 earthquake. Baxter talks about the importance of acknowledging the families of the deceased, and the changes and improvements that have been made by the New Zealand Fire Service since the collapse of the CTV building.

Audio, Radio New Zealand

The coroner has ruled the search and rescue effort at Christchurch's CTV building did not contribute to the deaths of eight people who survived the initial collapse. However Gordon Matenga criticised nearly every aspect of the fire service's response to the tragedy that claimed 115 of the 185 lives lost in the February 2011 earthquake.

Audio, Radio New Zealand

The Fire Service responds to the Coroner's criticisms over the CTV building collapse in the Christchurch Earthquakes, Teina Pora will be released on parole after 21 years inside prison for crimes he says he did'nt commit, and in Dateline Pacific, A newly elected leader in Fiji issues a challenge to Rear Admiral Franf Bainimarama.

Audio, Radio New Zealand

Topics - The Parole Board has decided that Teina Pora should be released from prison. Pora has served 21 years of a life sentence for murdering and raping Susan Burdett in Auckland in 1992. He continues to protest his innocence, and he'll appear before the Privy Council in London at the end of the year in an effort to clear his name. A coroner's report criticises almost every aspect of the Fire Service's response to the CTV building collapse that killed 115 people in the February 2011 Christchurch earthquake. Gordon Matenga says more people, more resources, better communication and a better structure might have improved the chances of saving more lives that day.

Research papers, The University of Auckland Library

New Zealand’s stock of unreinforced masonry (URM) bearing wall buildings was principally constructed between 1880 and 1935, using fired clay bricks and lime or cement mortar. These buildings are particularly vulnerable to horizontal loadings such as those induced by seismic accelerations, due to a lack of tensile force-resisting elements in their construction. The poor seismic performance of URM buildings was recently demonstrated in the 2011 Christchurch earthquake, where a large number of URM buildings suffered irreparable damage and resulted in a significant number of fatalities and casualties. One of the predominant failure modes that occurs in URM buildings is diagonal shear cracking of masonry piers. This diagonal cracking is caused by earthquake loading orientated parallel to the wall surface and typically generates an “X” shaped crack pattern due to the reversed cyclic nature of earthquake accelerations. Engineered Cementitious Composite (ECC) is a class of fiber reinforced cement composite that exhibits a strain-hardening characteristic when loaded in tension. The tensile characteristics of ECC make it an ideal material for seismic strengthening of clay brick unreinforced masonry walls. Testing was conducted on 25 clay brick URM wallettes to investigate the increase in shear strength for a range of ECC thicknesses applied to the masonry wallettes as externally bonded shotcrete reinforcement. The results indicated that there is a diminishing return between thickness of the applied ECC overlay and the shear strength increase obtained. It was also shown that, the effectiveness of the externally bonded reinforcement remained constant for one and two leaf wallettes, but decreased rapidly for wall thicknesses greater than two leafs. The average pseudo-ductility of the strengthened wallettes was equal to 220% of that of the as-built wallettes, demonstrating that ECC shotcrete is effective at enhancing both the in-plane strength and the pseudo-ductility of URM wallettes. AM - Accepted Manuscript