Search

found 13 results

Research papers, University of Canterbury Library

The 4 September 2010 Darfield and 22 February 2011 Christchurch earthquakes caused significant damage to Christchurch and surrounding suburbs as a result of the widespread liquefaction and lateral spreading that occurred. Ground surveying-based field investigations were conducted following these two events in order to measure permanent ground displacements in areas significantly affected by lateral spreading. Data was analysed with respect to the distribution of lateral spreading vs. distance from the waterway, and the failure patterns observed. Two types of failure distribution patterns were observed, a typical distributed pattern and an atypical block failure. Differences in lateral spreading measurements along adjacent banks of the Avon River in the area of Dallington were also examined. The spreading patterns between the adjacent banks varied with the respective river geometry and/or geotechnical conditions at the banks.

Images, UC QuakeStudies

Workers operate a drilling rig, sampling soil as part of EQC's geotechnical investigation of TC3 land. The photographer comments, "The work of getting 'soil' samples from all the areas marked as green/blue zones in Christchurch. These areas may be susceptible to liquefaction if a major earthquake occurs. The soil samples were a failure as all they found was sand".

Audio, Radio New Zealand

Before the earthquakes, Sarah Miles ran a psychotherapy practice in Christchurch. During the recovery phase she was astounded to find that when it comes to issues of real importance to the citizens â€" welfare, policyholder protection, economic security and education â€" politicians are conveniently deaf, dumb and blind. She’s written a book intended to expose the Government and the insurance industry's failure, she says, to protect the citizens of Christchurch and draw attention to the need for change to ensure that there is not a repeat of what she describes as the fiasco that happened in her city. Sarah Miles’ book, The Christchurch Fiasco â€" Insurance Aftershock and its Implications for New Zealand and Beyond, is published by Dunmore Publishing.

Audio, Radio New Zealand

Before the earthquakes, Sarah Miles ran a psychotherapy practice in Christchurch. During the recovery phase she was astounded to find that when it comes to issues of real importance to the citizens - welfare, policyholder protection, economic security and education - politicians are conveniently deaf, dumb and blind. She’s written a book intended to expose the Government and the insurance industry's failure, she says, to protect the citizens of Christchurch and draw attention to the need for change to ensure that there is not a repeat of what she describes as the fiasco that happened in her city. Sarah Miles’ book, The Christchurch Fiasco - Insurance Aftershock and its Implications for New Zealand and Beyond, is published by Dunmore Publishing.

Audio, Radio New Zealand

Before the earthquakes, Sarah Miles ran a psychotherapy practice in Christchurch. During the recovery phase she was astounded to find that when it comes to issues of real importance to the citizens - welfare, policyholder protection, economic security and education - politicians are conveniently deaf, dumb and blind. She's written a book intended to expose the Government and the insurance industry's failure, she says, to protect the citizens of Christchurch and draw attention to the need for change to ensure that there is not a repeat of what she describes as the fiasco that happened in her city. Sarah Miles' book, The Christchurch Fiasco - Insurance Aftershock and its Implications for New Zealand and Beyond, is published by Dunmore Publishing.

Research papers, University of Canterbury Library

Following the 22 February 2011, MW 6.2 earthquake located on a fault beneath the Port Hills of Christchurch, fissuring of up to several hundred metres in length was observed in the loess and loess-colluvium of foot-slope positions in north-facing valleys of the Port Hills. The fissuring was observed in all major valleys, occurred at similar low altitudes, showing a contour-parallel orientation and often accompanied by both lateral compression/extension features and spring formation in the valley floor below. Fissuring locations studied in depth included Bowenvale Valley, Hillsborough Valley, Huntlywood Terrace–Lucas Lane, Bridle Path Road, and Maffeys Road–La Costa Lane. Investigations into loess soil, its properties and mannerisms, as well as international examples of its failure were undertaken, including study of the Loess Plateau of China, the Teton Dam, and palaeo-fissuring on Banks Peninsula. These investigations lead to the conclusion that loess has the propensity to fail, often due to the infiltration of water, the presence of which can lead to its instantaneous disaggregation. Literature study and laboratory analysis of Port Hills loess concluded that is has the ability to be stable in steep, sub-vertical escarpments, and often has a sub-vertically jointed internal structure and has a peak shear strength when dry. Values for cohesion, c (kPa) and the internal friction angle, ϕ (degrees) of Port Hills loess were established. The c values for the 40 Rapaki Road, 3 Glenview Terrace loess samples were 13.4 kPa and 19.7 kPa, respectively. The corresponding ϕ values were thought unusually high, at 42.0° and 43.4°.The analysed loess behaved very plastically, with little or no peak strength visible in the plots as the test went almost directly to residual strength. A geophysics resistivity survey showed an area of low resistivity which likely corresponds to a zone of saturated clayey loess/loess colluvium, indicating a high water table in the area. This is consistent with the appearances of local springs which are located towards the northern end of each distinct section of fissure trace and chemical analysis shows that they are sourced from the Port Hills volcanics. Port Hills fissuring may be sub-divided into three categories, Category A, Category B, and Category C, each characterised by distinctive features of the fissures. Category A includes fissures which display evidence of, spring formation, tunnel-gullying, and lateral spreading-like behaviour or quasi-toppling. These fissures are several metres down-slope of the loess-bedrock interface, and are in valleys containing a loess-colluvium fill. Category B fissures are in wider valleys than those in Category A, and the valleys contain estuarine silty sediments which liquefied during the earthquake. Category C fissures occurred at higher elevations than the fissures in the preceding categories, being almost coincident with bedrock outcropping. It is believed that the mechanism responsible for causing the fissuring is a complex combination of three mechanisms: the trampoline effect, bedrock fracturing, and lateral spreading. These three mechanisms can be applied in varying degrees to each of the fissuring sites in categories A, B, and C, in order to provide explanation for the observations made at each. Toppling failure can describe the soil movement as a consequence of the a three causative mechanisms, and provides insight into the movement of the loess. Intra-loess water coursing and tunnel gullying is thought to have encouraged and exacerbated the fissuring, while not being the driving force per se. Incipient landsliding is considered to be the least likely of the possible fissuring interpretations.

Audio, Radio New Zealand

DAVID SHEARER to the Prime Minister: Does he stand by his statement "I am deeply concerned about every child in New Zealand who is in poverty"; if so, why has the number of children living in material hardship grown under his watch? TODD McCLAY to the Minister of Finance: What measures has the Government taken to support vulnerable New Zealanders through the aftermath of the domestic recession and global financial crisis? METIRIA TUREI to the Prime Minister: When he said "we don't want to see any New Zealand child suffer … children don't get to make choices, they're often the victim of circumstance" does that mean he will take tangible steps to ensure children don't suffer because of circumstances beyond their control? Rt Hon WINSTON PETERS to the Prime Minister: Does he have confidence in the Minister of Immigration? Hon DAVID PARKER to the Minister of Finance: Compared to 2012, does the Reserve Bank forecast the New Zealand dollar (as measured by the Trade Weighted Index) to strengthen or weaken in the next two years, and does he believe this will make New Zealand exporters more competitive or less competitive? DAVID BENNETT to the Minister for Economic Development: How is the Government encouraging the sustainable use of natural resources to support jobs and grow the economy? Hon MARYAN STREET to the Minister of Health: Is he satisfied with the state of children's health in New Zealand; if not, why not? COLIN KING to the Minister of Energy and Resources: What recent announcement has he made about Block Offer 2012? EUGENIE SAGE to the Minister for the Environment: Does she agree with the New Zealand Freshwater Sciences Society in relation to freshwater that "failure to act with decisiveness and urgency risks further environmental degradation and erosion of our international environmental reputation"; if not, why not? Hon LIANNE DALZIEL to the Minister for Building and Construction: How quickly will he respond to the building performance, assessment and construction recommendations of the Royal Commission of Inquiry into Building Failure caused by the Canterbury Earthquakes? NICKY WAGNER to the Minister for Building and Construction: What is the Government doing in response to the Canterbury Earthquakes Royal Commission's full report? CLARE CURRAN to the Prime Minister: Does he stand by all his statements?

Images, Alexander Turnbull Library

Four cartoons in the same frame commenting on news and happenings in the week ending 15 December 2011. The cartoons refer to the expulsion of the controversial Member of Parliament, Brendan Horan, from the New Zealand First Party by its leader, Winston Peters; the stereotyping of New Zealand as being 'Middle Earth' following the filming of 'The Hobbit', punned as 'The Habbit'; the lax attitude to building design and standards, which led to the CTV Building disaster in the Christchurch earthquake; the news about the New Zealand SPCA teaching dogs to drive. Quantity: 1 digital cartoon(s).

Research papers, The University of Auckland Library

As part of the ‘Project Masonry’ Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. Also, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake. In addition to presenting a summary of Project Masonry, the broader research activity at the University of Auckland pertaining to the seismic assessment and improvement of unreinforced masonry buildings is outlined. The purpose of this outline is to provide an overview and bibliography of published literature and to communicate on-going research activity that has not yet been reported in a complete form. http://sesoc.org.nz/conference/programme.pdf

Research papers, University of Canterbury Library

The magnitude Mw 6.2 earthquake of February 22nd 2011 that struck beneath the city of Christchurch, New Zealand, caused widespread damage and was particularly destructive to the Central Business District (CBD). The shaking caused major damage, including collapses of structures, and initiated ground failure in the form of soil liquefaction and consequent effects such as sand boils, surface flooding, large differential settlements of buildings and lateral spreading of ground towards rivers were observed. A research project underway at the University of Canterbury to characterise the engineering behaviour of the soils in the region was influenced by this event to focus on the performance of the highly variable ground conditions in the CBD. This paper outlines the methodology of this research to characterise the key soil horizons that underlie the CBD that influenced the performance of important structures during the recent earthquakes, and will influence the performance of the rebuilt city centre under future events. The methodology follows post-earthquake reconnaissance in the central city, a desk study on ground conditions, site selection, mobilisation of a post-earthquake ground investigation incorporating the cone penetration test (CPT), borehole drilling, shear wave velocity profiling and Gel-push sampling followed by a programme of laboratory testing including monotonic and cyclic testing of the soils obtained in the investigation. The research is timely and aims to inform the impending rebuild, with appropriate information on the soils response to dynamic loading, and the influence this has on the performance of structures with various foundation forms.