Search

found 13 results

Audio, Radio New Zealand

Victorian Authorities are warning residents of significant aftershocks following on from the magnitude 5.8 earthquake which shook Melbourne around 9am yesterday, causing significant structural damage across the city. The University of Melbourne's Dr Mark Quigley is a professor of tectonics, who became a familiar voice and face through the Christchurch quakes. Our producer Matthew Theunissen asked him how yesterday's quake compared to those he experienced in Christchurch.

Research papers, University of Canterbury Library

These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.

Research papers, University of Canterbury Library

These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.

Research papers, University of Canterbury Library

These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.

Research papers, University of Canterbury Library

While it is well known that challenging and distressing events can negatively impact people’s psychological and physical state, increasingly researchers have investigated how challenging or stressful life circumstances can lead to the phenomenon of posttraumatic growth: positive psychological or life changes that can emerge from potentially traumatic events. Posttraumatic growth has been investigated primarily with people displaying varying levels of posttraumatic stress symptoms and other psychopathology due to theories suggesting that resilience would prohibit posttraumatic growth. Few studies have examined growth amongst resilient people. The current study examined posttraumatic growth in a sample of sixty psychologically healthy people who experienced the Canterbury earthquake sequence of 2010-2011. The current study is a follow-up study that used thematic analysis to explore: (1) Whether posttraumatic growth is evident nine years after the Canterbury earthquake sequence and approximately six years after baseline assessment; and (2) What themes may facilitate the posttraumatic growth process in psychologically healthy people. Data were collected using semi-structured interviews. Thematic analysis revealed four themes describing participants’ experiences of growth: New possibilities, reappraisal of life and priorities, positive changes in self-perception and closer more meaningful relationships. Themes describing posttraumatic growth provide evidence for research question one. Thematic analysis revealed three main themes and multiple subthemes that may facilitate the process of growth in psychologically healthy people: Hardship, optimistic positive appraisal and people helping people. Themes describing processes that may lead to growth provide evidence for research question two. Results of the current study provide insights about the experience of growth in psychologically healthy people and cognitive and psychosocial factors that may facilitate growth in resilient individuals.

Audio, Radio New Zealand

A mental wellbeing programme for primary and intermediate school students will be expanded to five more district health board areas. Mana Ake started in 2018 in Canterbury and Kaikōura, and was a response to the ongoing trauma some tamariki were experiencing following the earthquakes. Now more year 1 to 8 pupils will receive extra help if they're struggling. Our reporter Kirsty Frame was at the announcement in Auckland.

Research papers, University of Canterbury Library

This study analyses the success and limitations of the recovery process following the 2010–11 earthquake sequence in Christchurch, New Zealand. Data were obtained from in-depth interviews with 32 relocated households in Christchurch, and from a review of recovery policies implemented by the government. A top-down approach to disaster recovery was evident, with the creation of multiple government agencies and processes that made grassroots input into decision-making difficult. Although insurance proceeds enabled the repair and rebuilding of many dwellings, the complexity and adversarial nature of the claim procedures also impaired recovery. Householders’ perceptions of recovery reflected key aspects of their post-earthquake experiences (e.g. the housing offer they received, and the negotiations involved), and the outcomes of their relocation (including the value of the new home, their subjective well-being, and lifestyle after relocation). Protracted insurance negotiations, unfair offers and hardships in post-earthquake life were major challenges to recovery. Less-thanfavourable recovery experiences also transformed patterns of trust in local communities, as relocated householders came to doubt both the government and private insurance companies’ ability to successfully manage a disaster. At the same time, many relocated households expressed trust in their neighbours and communities. This study illuminates how government policies influence disaster recovery while also suggesting a need to reconsider centralised, top-down approaches to managing recovery.

Research papers, The University of Auckland Library

This thesis presents the application of data science techniques, especially machine learning, for the development of seismic damage and loss prediction models for residential buildings. Current post-earthquake building damage evaluation forms are developed for a particular country in mind. The lack of consistency hinders the comparison of building damage between different regions. A new paper form has been developed to address the need for a global universal methodology for post-earthquake building damage assessment. The form was successfully trialled in the street ‘La Morena’ in Mexico City following the 2017 Puebla earthquake. Aside from developing a framework for better input data for performance based earthquake engineering, this project also extended current techniques to derive insights from post-earthquake observations. Machine learning (ML) was applied to seismic damage data of residential buildings in Mexico City following the 2017 Puebla earthquake and in Christchurch following the 2010-2011 Canterbury earthquake sequence (CES). The experience showcased that it is readily possible to develop empirical data only driven models that can successfully identify key damage drivers and hidden underlying correlations without prior engineering knowledge. With adequate maintenance, such models have the potential to be rapidly and easily updated to allow improved damage and loss prediction accuracy and greater ability for models to be generalised. For ML models developed for the key events of the CES, the model trained using data from the 22 February 2011 event generalised the best for loss prediction. This is thought to be because of the large number of instances available for this event and the relatively limited class imbalance between the categories of the target attribute. For the CES, ML highlighted the importance of peak ground acceleration (PGA), building age, building size, liquefaction occurrence, and soil conditions as main factors which affected the losses in residential buildings in Christchurch. ML also highlighted the influence of liquefaction on the buildings losses related to the 22 February 2011 event. Further to the ML model development, the application of post-hoc methodologies was shown to be an effective way to derive insights for ML algorithms that are not intrinsically interpretable. Overall, these provide a basis for the development of ‘greybox’ ML models.

Research papers, University of Canterbury Library

Researchers have begun to explore the opportunity presented by blue-green infrastructure(a subset of nature-based solutions that provide blue and green space in urban infrastructure)as a response to the pressures of climate change. The 2010/2011 Canterbury earthquake sequence created a unique landscape within which there is opportunity to experiment with and invest in new solutions to climate change adaptation in urban centres. Constructed wetlands are an example of blue-green infrastructure that can potentially support resilience in urban communities. This research explores interactions between communities and constructed wetlands to understand how this may influence perceptions of community resilience. The regeneration of the Ōtākaro Avon River Corridor (OARC) provides a space to investigate these relationships. Seven stakeholders from the community, industry, and academia, each with experience in blue-green infrastructure in the OARC, participated in a series of semi-structured interviews. Each participant was given the opportunity to reflect on their perspectives of community, community resilience, and constructed wetlands and their interconnections. Interview questions aligned with the overarching research objectives to (1) understand perceptions around the role of wetlands in urban communities, (2) develop a definition for community resilience in the context of the Ōtākaro Avon community, and (3) reflect on how wetlands can contribute to (or detract from) community resilience. This study found that constructed wetlands can facilitate learning about the challenges and solutions needed to adapt to climate change. From the perspective of the community representatives, community resilience is linked to social capital. Strong social networks and a relationship with nature were emphasised as core components of a community’s ability to adapt to disruption. Constructed wetlands are therefore recognised as potentially contributing to community resilience by providing spaces for people to engage with each other and nature. Investment in constructed wetlands can support a wider response to climate change impacts. This research was undertaken with the support of the Ōtākaro Living Laboratory Trust, who are invested in the future of the OARC. The outcomes of this study suggest that there is an opportunity to use wetland spaces to establish programmes that explore the perceptions of constructed wetlands from a broader community definition, at each stage of the wetland life cycle, and at wider scales(e.g., at a city scale or beyond).

Research Papers, Lincoln University

On November 14, 2016 an earthquake struck the rural districts of Kaikōura and Hurunui on New Zealand’s South Island. The region—characterized by small dispersed communities, a local economy based on tourism and agriculture, and limited transportation connections—was severely impacted. Following the quake, road and rail networks essential to maintaining steady flows of goods, visitors, and services were extensively damaged, leaving agrifood producers with significant logistical challenges, resulting in reduced productivity and problematic market access. Regional tourism destinations also suffered with changes to the number, characteristics, and travel patterns of visitors. As the region recovers, there is renewed interest in the development and promotion of agrifood tourism and trails as a pathway for enhancing rural resilience, and a growing awareness of the importance of local networks. Drawing on empirical evidence and insights from a range of affected stakeholders, including food producers, tourism operators, and local government, we explore the significance of emerging agrifood tourism initiatives for fostering diversity, enhancing connectivity, and building resilience in the context of rural recovery. We highlight the motivation to diversify distribution channels for agrifood producers, and strengthen the region’s tourism place identity. Enhancing product offerings and establishing better links between different destinations within the region are seen as essential. While such trends are common in rural regions globally, we suggest that stakeholders’ shared experience with the earthquake and its aftermath has opened up new opportunities for regeneration and reimagination, and has influenced current agrifood tourism trajectories. In particular, additional funding for tourism recovery marketing and product development after the earthquake, and an emphasis on greater connectivity between the residents and communities through strengthening rural networks and building social capital within and between regions, is enabling more resilient and sustainable futures.

Research papers, The University of Auckland Library

While societal messages can encourage an unhealthy strive for perfection, the notion of embracing individual flaws and openly displaying vulnerabilities can appear foreign and outlandish. However, when fallibility is acknowledged and imperfection embraced, intimate relationships built on foundations of acceptance, trust and understanding can be established. In an architectural context, similar deep-rooted connections can be formed between a people and a place through the retention of layers of historical identity. When a building is allowed to age with blemishes laid bare for all to see, an architectural work can exhibit a sense of 'humanising vulnerability' where the bruises and scars it bears are able to visually communicate its contextual narrative. This thesis explores the notion of designing to capitalise on past decay through revitalisation of the former Wood Brothers Flour Mill in Addington, Christchurch (1891). Known as one of the city's last great industrial buildings, the 130-year-old structure remains hugely impressive due to its sheer size and scale despite being abandoned and subject to vandalism for a number of years. Its condition of obsolescence ensured the retention of visible signs of wear and tear in addition to the extensive damage caused by the 2010-12 Canterbury earthquakes. In offering a challenge to renovation and reconstruction as a means of conservation, this thesis asks if 'doing less' has the potential to 'do more'. How can an understanding of architecture as an ongoing process inform a design approach to celebrate ageing and patina? While the complex is undergoing redevelopment at the time of writing, the design project embraces the condition of the historic buildings in the immediate aftermath of the earthquakes and builds upon the patina of the mill and adjacent flour and grain store in developing a design for their adaptation as a micro-distillery. Research into the traditional Japanese ideology of wabi-sabi and its practical applications form the basis for a regenerative design approach which finds value in imperfection, impermanence and incompleteness. The thesis combines a literature review, precedent review and site analysis together with a design proposal. This thesis shows that adaptive reuse projects can benefit from an active collaboration with the processes of decay. Instead of a mindset where an architectural work is considered the finished article upon completion of construction, an empathetic and sensitive design philosophy is employed in which careful thought is given to the continued preservation and evolution of a structure with the recognition that evidence of past wear, tear, patina and weathering can all contribute positively to a building's future. In this fashion, rather than simply remaining as relics of the past, buildings can allow the landscape of their urban context to shape and mould them to ensure that their architectural experience can continue to be enjoyed by generations to come.

Research papers, University of Canterbury Library

In major seismic events, a number of plan-asymmetric buildings which experienced element failure or structural collapse had twisted significantly about their vertical axis during the earthquake shaking. This twist, known as “building torsion”, results in greater demands on one side of a structure than on the other side. The Canterbury Earthquakes Royal Commission’s reports describe the response of a number of buildings in the February 2011 Christchurch earthquakes. As a result of the catastrophic collapse of one multi-storey building with significant torsional irregularity, and significant torsional effects also in other buildings, the Royal Commission recommended that further studies be undertaken to develop improved simple and effective guides to consider torsional effects in buildings which respond inelastically during earthquake shaking. Separately from this, as building owners, the government, and other stakeholders, are planning for possible earthquake scenarios, they need good estimates of the likely performance of both new and existing buildings. These estimates, often made using performance based earthquake engineering considerations and loss estimation techniques, inform decision making. Since all buildings may experience torsion to some extent, and torsional effects can influence demands on building structural and non-structural elements, it is crucial that demand estimates consider torsion. Building seismic response considering torsion can be evaluated with nonlinear time history analysis. However, such analysis involves significant computational effort, expertise and cost. Therefore, from an engineers’ point of view, simpler analysis methods, with reasonable accuracy, are beneficial. The consideration of torsion in simple analysis methods has been investigated by many researchers. However, many studies are theoretical without direct relevance to structural design/assessment. Some existing methods also have limited applicability, or they are difficult to use in routine design office practice. In addition, there has been no consensus about which method is best. As a result, there is a notable lack of recommendations in current building design codes for torsion of buildings that respond inelastically. There is a need for building torsion to be considered in yielding structures, and for simple guidance to be developed and adopted into building design standards. This study aims to undertaken to address this need for plan-asymmetric structures which are regular over their height. Time history analyses are first conducted to quantify the effects of building plan irregularity, that lead to torsional response, on the seismic response of building structures. Effects of some key structural and ground motion characteristics (e.g. hysteretic model, ground motion duration, etc.) are considered. Mass eccentricity is found to result in rather smaller torsional response compared to stiffness/strength eccentricity. Mass rotational inertia generally decreases the torsional response; however, the trend is not clearly defined for torsionally restrained systems (i.e. large λty). Systems with EPP and bilinear models have close displacements and systems with Takeda, SINA, and flag-shaped models yield almost the same displacements. Damping has no specific effect on the torsional response for the single-storey systems with the unidirectional eccentricity and excitation. Displacements of the single-storey systems subject to long duration ground motion records are smaller than those for short duration records. A method to consider torsional response of ductile building structures under earthquake shaking is then developed based on structural dynamics for a wide range of structural systems and configurations, including those with low and high torsional restraint. The method is then simplified for use in engineering practice. A novel method is also proposed to simply account for the effects of strength eccentricity on response of highly inelastic systems. A comparison of the accuracy of some existing methods (including code-base equivalent static method and model response spectrum analysis method), and the proposed method, is conducted for single-storey structures. It is shown that the proposed method generally provides better accuracy over a wide range of parameters. In general, the equivalent static method is not adequate in capturing the torsional effects and the elastic modal response spectrum analysis method is generally adequate for some common parameters. Record-to-record variation in maximum displacement demand on the structures with different degrees of torsional response is considered in a simple way. Bidirectional torsional response is then considered. Bidirectional eccentricity and excitation has varying effects on the torsional response; however, it generally increases the weak and strong edges displacements. The proposed method is then generalized to consider the bidirectional torsion due to bidirectional stiffness/strength eccentricity and bidirectional seismic excitation. The method is shown to predict displacements conservatively; however, the conservatism decreases slightly for cases with bidirectional excitation compared to those subject to unidirectional excitation. In is shown that the roof displacement of multi-storey structures with torsional response can be predicted by considering the first mode of vibration. The method is then further generalized to estimate torsional effects on multi-storey structure displacement demands. The proposed procedure is tested multi-storey structures and shown to predict the displacements with a good accuracy and conservatively. For buildings which twist in plan during earthquake shaking, the effect of P-Δλ action is evaluated and recommendations for design are made. P-Δλ has more significant effects on systems with small post- yield stiffness. Therefore, system stability coefficient is shown not to be the best indicator of the importance of P-Δλ and it is recommended to use post-yield stiffness of system computed with allowance for P-Δλ effects. For systems with torsional response, the global system stability coefficient and post- yield stiffness ration do not reflect the significance of P-Δλ effects properly. Therefore, for torsional systems individual seismic force resisting systems should be considered. Accuracy of MRSA is investigated and it is found that the MRSA is not always conservative for estimating the centre of mass and strong edge displacements as well as displacements of ductile systems with strength eccentricity larger than stiffness eccentricity. Some modifications are proposed to get the MRSA yields a conservative estimation of displacement demands for all cases.