This thesis presents an assessment of historic seismic performance of the New Zealand stopbank network from the 1968 Inangahua earthquake through to the 2016 Kaikōura earthquake. An overview of the types of stopbanks and the main aspects of the design and construction of earthen stopbanks was presented. Stopbanks are structures that are widely used on the banks of rivers and other water bodies to protect against the impact of flood events. Earthen stopbanks are found to be the most used for such protection measures. Different stopbank damage or failure modes that may occur due to flooding or earthquake excitation were assessed with a focus on past earthquakes internationally, and examples of these damage and failure modes were presented. Stopbank damage and assessment reports were collated from available reconnaissance literature to develop the first geospatial database of stopbank damage observed in past earthquakes in New Zealand. Damage was observed in four earthquakes over the past 50 years, with a number of earthquakes resulting in no stopbank damage. The damage database therefore focussed on the Edgecumbe, Darfield, Christchurch and Kaikōura earthquakes. Cracking of the crest and liquefaction-induced settlement were the most common forms of damage observed. To understand the seismic demand on the stopbank network in past earthquakes, geospatial analyses were undertaken to approximate the peak ground acceleration (PGA) across the stopbank network for ten large earthquakes that have occurred in New Zealand over the past 50 years. The relationship between the demand, represented by the peak ground acceleration (PGA) and damage is discussed and key trends identified. Comparison of the seismic demand and the distribution of damage suggested that the seismic performance of the New Zealand stopbank network has been generally good across all events considered. Although a significant length of the stopbank networks were exposed to high levels of shaking in past events, the overall damage length was a small percentage of this. The key aspect controlling performance was the performance of the underlying foundation soils and the effect of this on the stopbank structure and stability.
The skills agenda has grown in prominence within the construction industry. Indeed, skill shortages have been recognised as a perennial problem the construction industry faces, especially after a major disaster. In the aftermath of the Christchurch earthquakes, small and medium construction companies were at the forefront of rebuilding efforts. While the survival of these companies was seen to be paramount, and extreme events were seen to be a threat to survival, there is a dearth of research centring on their resourcing capacity following a disaster. This research aims to develop workforce resourcing best practice guidelines for subcontractors in response to large disaster reconstruction demands. By using case study methods, this research identified the challenges faced by subcontracting businesses in resourcing Christchurch recovery projects; identified the workforce resourcing strategies adopted by subcontracting businesses in response to reconstruction demand; and developed a best practice guideline for subcontracting businesses in managing the workforce at the organisational and/or project level. This research offers a twofold contribution. First, it provides an overview of workforce resourcing practices in subcontracting businesses. This understanding has enabled the development of a more practical workforce resourcing guideline for subcontractors. Second, it promotes evidence-informed decision-making in subcontractors’ workforce resourcing. Dynamics in workforce resourcing and their multifaceted interactions were explicitly depicted in this research. More importantly, this research provides a framework to guide policy development in producing a sustainable solution to skill shortages and establishing longterm national skill development initiatives. Taken together, this research derives a research agenda that maps under-explored areas relevant for further elaboration and future research. Prospective researchers can use the research results in identifying gaps and priority areas in relation to workforce resourcing.
In the last two decades, the retail sector has experienced unprecedented upheaval, having severe implications for economic development and sustenance of traditional inner-city retail districts. In the city of Christchurch, New Zealand, this effect has been exacerbated by a series of earthquakes in 2010/2011 which destroyed much of the traditional retail precinct of the city. After extensive rebuild activity of the city’s infrastructure, the momentum of retailers returning to the inner city was initially sluggish but eventually gathered speed supported by increased international visitation. In early 2020, the return to retail normality came to an abrupt halt after the emergence of the COVID-19 pandemic. This study uses spending and transaction data to analyze the compounding impact of the earthquake’s aftermath, shift to online shopping, and the retail disruption in the Christchurch central retail precinct because of COVID-19. The findings illustrate how consumers through their spending respond to different types of external shocks, altering their consumption patterns and retail mode (offline and online) to cope with an ever-changing retail landscape. Each event triggers different spending patterns that have some similarities but also stark differences, having implications for a sustainable and resilient retail industry in Christchurch. Implications for urban retail precinct development are also discussed.
This thesis aims to find a new weld sizing criterion for the steel construction industry in New Zealand. Current standards, such as NZS 3404, ANSI/AISC 360-16, and Eurocode 3 use a factor of 0.6 to calculate weld capacity from the weld metal’s ultimate tensile strength (UTS). This difference between weld capacity and UTS is thought to have arisen from the need for a large factor of safety to ensure welds perform correctly during an earthquake. The events in Christchurch proved that this criterion was able to work as intended. Several papers have been published by P. Dong from University of Michigan, and alongside other researchers, they investigate a new definition of weld shear strength by using a traction stress-based method. This new method not only allows realistic angles of weld fracture to be investigated, but also different weld geometries such as partial penetration butt welds. Ongoing research at HERA is showing how this welding technique is a more economical option than larger fillet welds with similar performance. For this thesis a range of sample types were statically tested until failure. UTS of several weld metals was found and then compared with transverse shear results to see if 0.6 is indeed correct. It was found that if the results from the standardized transverse shear samples was used, this ratio could be increased to 1.0. But if the results from cruciform joint samples was used, which still load the weld in a transverse direction but with a higher stress concentration, required the ratio to be 0.8 for welds that could be welded with a single pass, and decreased further to 0.75 for large welds with 3 passes. Two types of partial penetration butt weld (PPBW) geometries were compared to a comparatively sized fillet weld. These tests showed the PPBWs were the best performers, with all PPBWs surviving testing compared to only 33% of fillet welds.