Christchurch 2011 earthquake: 10 years on
Audio, Radio New Zealand
Jo Gallagher was working as a St John Advanced paramedic on February 22 10 years ago and was treating a patient when the quake struck. She joins Jesse to share her story.
Jo Gallagher was working as a St John Advanced paramedic on February 22 10 years ago and was treating a patient when the quake struck. She joins Jesse to share her story.
Misko Cubrinovski is interested how the ground and the structures on - and in - it behave during an earthquake.
He's been fighting the insurance company since the 2011 earthquakes.
Liquefaction lessons from the 2011 Christchurch earthquake, and biotechnologists doing interesting things with plants.
A total of 115 people died when the building collapsed following the Christchurch earthquake in 2011.
Survivors are gathering in Christchurch today to remember those who died in the devastating Christchurch earthquake of 2011. Of the 185 people who were killed, 115 died when the CTV building collapsed. Former CTV employee Tom Hawker watched his workplace collapse in front of him. He speaks to Susie Ferguson.
In less than a minute, Christchurch and its people will be changed forever. Produced by Katy Gosset and Justin Gregory.
RNZ is launching a new podcast today marking the tenth anniversary of Christchurch earthquake. It's called Fragments: Firsthand accounts of the February 2011 earthquakes. The podcast features interviews done with quake survivors recorded in the months following the devastating earthquake recorded by locals Julie Hutton and Sandra Close. RNZ checked in with some of the people Hutton and Close spoke to ten years on from the disaster. Katy Gosset produced and presented the podcast. An earlier version of this article failed to reference the work from Julie Hutton and Sandra Close.
Paul Bushnell is talking today about how different clichés are subverted by great storytelling: Fragments, an RNZ series about the 2011 Christchurch earthquake, and Carrier from the USA - what would once have been called a radio drama.
A prominent Christchurch property investor says the Government's anchor projects meant to help rebuild the city faster, has instead slowed it down. After the 2011 earthquake, the Government launched a recovery plan for the CBD, which had 16 anchor projects designed to spur on the rebuild. However, many have been plagued by delays and are still unfinished. Property investor Antony Gough told RNZ reporter Anan Zaki that unlike the Government, it was the private sector which ploughed ahead with the rebuild.
These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.
The Aromaunga Baxters Flowers nursery in Heathcote, Christchurch sits right above the point where the earthquake struck on 22 February 2011. The greenhouses on the steep slopes of the Port Hills, as well as a big old villa and other brick buildings were badly damaged. Ten years on co-owner John Baxter says the earthquake damage is still being repaired, but sales have been boosted by a lack of imported flowers due to Covid-19 restrictions.
Cantabrians are still surrounded broken buildings and empty spaces on the 10th anniversary of the devastating 22 February 2011 Christchurch earthquake. The disaster forced 70 percent of the CBD to be demolished. The Government launched an ambitious recovery plan to help it recover in 2012. The Christchurch Central Recovery Plan, dubbed the "blueprint" would dictate the rebuild of the central city. To support it, the Government would complete a series of "anchor projects", to encourage investment in the city and make it a more attractive place to live in. As Anan Zaki reports, the anchor projects appeared to weigh down the progress of the rebuild.
This thesis presents the application of data science techniques, especially machine learning, for the development of seismic damage and loss prediction models for residential buildings. Current post-earthquake building damage evaluation forms are developed for a particular country in mind. The lack of consistency hinders the comparison of building damage between different regions. A new paper form has been developed to address the need for a global universal methodology for post-earthquake building damage assessment. The form was successfully trialled in the street ‘La Morena’ in Mexico City following the 2017 Puebla earthquake. Aside from developing a framework for better input data for performance based earthquake engineering, this project also extended current techniques to derive insights from post-earthquake observations. Machine learning (ML) was applied to seismic damage data of residential buildings in Mexico City following the 2017 Puebla earthquake and in Christchurch following the 2010-2011 Canterbury earthquake sequence (CES). The experience showcased that it is readily possible to develop empirical data only driven models that can successfully identify key damage drivers and hidden underlying correlations without prior engineering knowledge. With adequate maintenance, such models have the potential to be rapidly and easily updated to allow improved damage and loss prediction accuracy and greater ability for models to be generalised. For ML models developed for the key events of the CES, the model trained using data from the 22 February 2011 event generalised the best for loss prediction. This is thought to be because of the large number of instances available for this event and the relatively limited class imbalance between the categories of the target attribute. For the CES, ML highlighted the importance of peak ground acceleration (PGA), building age, building size, liquefaction occurrence, and soil conditions as main factors which affected the losses in residential buildings in Christchurch. ML also highlighted the influence of liquefaction on the buildings losses related to the 22 February 2011 event. Further to the ML model development, the application of post-hoc methodologies was shown to be an effective way to derive insights for ML algorithms that are not intrinsically interpretable. Overall, these provide a basis for the development of ‘greybox’ ML models.
Motoko Kakubayashi joins us from Toyko where they are also about to mark a significant anniversary. A few weeks after the 2011 Christchurch earthquake, a magnitude 9.0 earthquake hit the east coast of Japan, triggering a tsunami that destroyed large parts of the coast, including damage to the Fukushima Dai-ichi Nuclear Power Plant. More than 15,000 lives were lost, more than 2000 still remain missing. In one afternoon, half a million people became homeless, and the search for family and friends at evacuation shelters began.
Advanced seismic effective-stress analysis is used to scrutinize the liquefaction performance of 55 well-documented case-history sites from Christchurch. The performance of these sites during the 2010-2011 Canterbury earthquake sequence varied significantly, from no liquefaction manifestation at the ground surface (in any of the major events) to severe liquefaction manifestation in multiple events. For the majority of the 55 sites, the simplified liquefaction evaluation procedures, which are conventionally used in engineering practice, could not explain these dramatic differences in the manifestation. Detailed geotechnical characterization and subsequent examination of the soil profile characteristics of the 55 sites identified some similarities but also important differences between sites that manifested liquefaction in the two major events of the sequence (YY-sites) and sites that did not manifest liquefaction in either event (NN-sites). In particular, while the YY-sites and NN-sites are shown to have practically identical critical layer characteristics, they have significant differences with regard to their deposit characteristics including the thickness and vertical continuity of their critical zones and liquefiable materials. A CPT-based effective stress analysis procedure is developed and implemented for the analyses of the 55 case history sites. Key features of this procedure are that, on the one hand, it can be fully automated in a programming environment and, on the other hand, it is directly equivalent (in the definition of cyclic resistance and required input data) to the CPT-based simplified liquefaction evaluation procedures. These features facilitate significantly the application of effective-stress analysis for simple 1D free-field soil-column problems and also provide a basis for rigorous comparisons of the outcomes of effective-stress analyses and simplified procedures. Input motions for the analyses are derived using selected (reference) recordings from the two major events of the 2010-2011 Canterbury earthquake sequence. A step-by-step procedure for the selection of representative reference motions for each site and their subsequent treatment (i.e. deconvolution and scaling) is presented. The focus of the proposed procedure is to address key aspects of spatial variability of ground motion in the near-source region of an earthquake including extended-source effects, path effects, and variation in the deeper regional geology.
The National Party wants to force councils to free up land for development in a bid to get more houses built. The party's proposal would give the government emergency powers modelled on those used to speed up house building in Canterbury following the earthquakes in 2010 and 2011. Party leader Judith Collins spoke to Corin Dann.
These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.
These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.
On the 10th anniversary of the devastating 2011 Christchurch quake we hear the first-hand story from Zara Potts, who describes how the brick cafe she was in caved in around her; we hear from Dr Caroline Bell on how the earthquakes impacted the mental health of Cantabrians and how things are looking a decade later; and our panellists share their own memories from that day.
There is growing expectation that local volunteers will play a more integrated role in disaster response, yet emergent groups are often ‘outsiders’ to crisis management, prompting questions of the conditions and processes by which these groups can forge relationships with established response agencies, and the tensions which can arise those interactions. This article analyses how student-led volunteers, as an emergent group, nevertheless gained “authority to operate” in the aftermath of the 2010-2011 earthquakes in Canterbury, New Zealand. Our study demonstrates how established response agencies and emergent groups can form hugely impactful and mutually supportive relationships. However, our analysis also points to two interrelated tensions that can arise, regarding the terms by which emergent groups are recognised, and the ‘distance’ considered necessary between emergent groups and established response agencies. The discussion considers implications for inclusiveness, risk and responsibility if emergent volunteers are to be further integrated into disaster response.
This study explores the nature of smaller businesses’ resilience following two major earthquakes that severely disrupted their place of doing business. Data from the owners of ten smaller businesses are qualitative and longitudinal, spanning the period 2011 through 2018, providing first-hand narrative accounts of their responses in the earthquakes’ aftermath. All ten owners showed some individual resilience; six businesses survived through to 2018, of which three have recovered strongly. All three owned their premises; operated business-tobusiness models; and were able to adapt and continue to follow path-extension strategies. All the other businesses had direct business-to-customer models operating from leased premises, typically in major retail malls. Four eventually recognised path-exhaustion at different times and so did not survive through to 2018. We conclude however that post-disaster recovery is best explained in terms of business model resilience. Even the most resilient of individual owners will struggle to survive if their business model is either not resilient or cannot be made so. Individual resilience is necessary but not sufficient.
The Manchester Courts building was a heritage building located in central Christchurch (New Zealand) that was damaged in the Mw 7.1 Darfield earthquake on 4 September 2010 and subsequently demolished as a risk reduction exercise. Because the building was heritage listed, the decision to demolish the building resulted in strong objections from heritage supporters who were of the opinion that the building had sufficient residual strength to survive possible aftershock earthquakes. On 22 February 2011 Christchurch was struck by a severe aftershock, leading to the question of whether building demolition had proven to be the correct risk reduction strategy. Finite element analysis was used to undertake a performance-based assessment, validating the accuracy of the model using the damage observed in the building before its collapse. In addition, soil-structure interaction was introduced into the research due to the comparatively low shear wave velocity of the soil. The demolition of a landmark heritage building was a tragedy that Christchurch will never recover from, but the decision was made considering safety, societal, economic and psychological aspects in order to protect the city and its citizens. The analytical results suggest that the Manchester Courts building would have collapsed during the 2011 Christchurch earthquake, and that the collapse of the building would have resulted in significant fatalities.
In the last two decades, New Zealand (NZ) has experienced significant earthquakes, including the 2010 M 7.2 Darfield, 2011 M 6.2 Christchurch, and 2016 M 7.8 Kaikōura events. Amongst these large events, tens of thousands of smaller earthquakes have occurred. While previous event and ground-motion databases have analyzed these events, many events below M 4 have gone undetected. The goal of this study is to expand on previous databases, particularly for small magnitude (M<4) and low-amplitude ground motions. This new database enables a greater understanding of regional variations within NZ and contributes to the validity of internationally developed ground-motion models. The database includes event locations and magnitude estimates with uncertainty considerations, and tectonic type assessed in a hierarchical manner. Ground motions are extracted from the GeoNet FDSN server and assessed for quality using a neural network classification approach. A deep neural network approach is also utilized for picking P and S phases for determination of event hypocentres. Relative hypocentres are further improved by double-difference relocation and will contribute toward developing shallow (< 50 km) seismic tomography models. Analysis of the resulting database is compared with previous studies for discussion of implications toward national hazard prediction models.
The Canterbury earthquake sequence of 2010-2011 wrought ruptures in not only the physical landscape of Canterbury and Christchurch’s material form, but also in its social, economic, and political fabrics and the lives of Christchurch inhabitants. In the years that followed, the widespread demolition of the CBD that followed the earthquakes produced a bleak landscape of grey rubble punctuated by damaged, abandoned buildings. It was into this post-earthquake landscape that Gap Filler and other ‘transitional’ organisations inserted playful, creative, experimental projects to bring life and energy back into the CBD. This thesis examines those interventions and the development of the ‘Transitional Movement’ between July 2013 and June 2015 via the methods of walking interviews and participant observation. This critical period in Christchurch’s recovery serves as an example of what happens when do-it-yourself (DIY) urbanism is done at scale across the CBD and what urban experimentation can offer city-making. Through an understanding of space as produced, informed by Lefebvre’s thinking, I explore how these creative urban interventions manifested a different temporality to orthodox planning and demonstrate how the ‘soft’ politics of these interventions contain the potential for gentrification and also a more radical politics of the city, by creating an opening space for difference.
Matthew McEachen should have had most of his life ahead of him when he died on February 22, 2011. The 25-year-old was a talented artist and designer, putting his skills to good use at the Southern Ink tattoo shop on Colombo St. But when the earthquake struck, Bruce, Jeanette and Sarah McEachen lost their much-loved son and older brother. Ten years on, Matti's legacy lives on. Checkpoint reporter Nick Truebridge and cameraman Nate McKinnon with his story.
In major seismic events, a number of plan-asymmetric buildings which experienced element failure or structural collapse had twisted significantly about their vertical axis during the earthquake shaking. This twist, known as “building torsion”, results in greater demands on one side of a structure than on the other side. The Canterbury Earthquakes Royal Commission’s reports describe the response of a number of buildings in the February 2011 Christchurch earthquakes. As a result of the catastrophic collapse of one multi-storey building with significant torsional irregularity, and significant torsional effects also in other buildings, the Royal Commission recommended that further studies be undertaken to develop improved simple and effective guides to consider torsional effects in buildings which respond inelastically during earthquake shaking. Separately from this, as building owners, the government, and other stakeholders, are planning for possible earthquake scenarios, they need good estimates of the likely performance of both new and existing buildings. These estimates, often made using performance based earthquake engineering considerations and loss estimation techniques, inform decision making. Since all buildings may experience torsion to some extent, and torsional effects can influence demands on building structural and non-structural elements, it is crucial that demand estimates consider torsion. Building seismic response considering torsion can be evaluated with nonlinear time history analysis. However, such analysis involves significant computational effort, expertise and cost. Therefore, from an engineers’ point of view, simpler analysis methods, with reasonable accuracy, are beneficial. The consideration of torsion in simple analysis methods has been investigated by many researchers. However, many studies are theoretical without direct relevance to structural design/assessment. Some existing methods also have limited applicability, or they are difficult to use in routine design office practice. In addition, there has been no consensus about which method is best. As a result, there is a notable lack of recommendations in current building design codes for torsion of buildings that respond inelastically. There is a need for building torsion to be considered in yielding structures, and for simple guidance to be developed and adopted into building design standards. This study aims to undertaken to address this need for plan-asymmetric structures which are regular over their height. Time history analyses are first conducted to quantify the effects of building plan irregularity, that lead to torsional response, on the seismic response of building structures. Effects of some key structural and ground motion characteristics (e.g. hysteretic model, ground motion duration, etc.) are considered. Mass eccentricity is found to result in rather smaller torsional response compared to stiffness/strength eccentricity. Mass rotational inertia generally decreases the torsional response; however, the trend is not clearly defined for torsionally restrained systems (i.e. large λty). Systems with EPP and bilinear models have close displacements and systems with Takeda, SINA, and flag-shaped models yield almost the same displacements. Damping has no specific effect on the torsional response for the single-storey systems with the unidirectional eccentricity and excitation. Displacements of the single-storey systems subject to long duration ground motion records are smaller than those for short duration records. A method to consider torsional response of ductile building structures under earthquake shaking is then developed based on structural dynamics for a wide range of structural systems and configurations, including those with low and high torsional restraint. The method is then simplified for use in engineering practice. A novel method is also proposed to simply account for the effects of strength eccentricity on response of highly inelastic systems. A comparison of the accuracy of some existing methods (including code-base equivalent static method and model response spectrum analysis method), and the proposed method, is conducted for single-storey structures. It is shown that the proposed method generally provides better accuracy over a wide range of parameters. In general, the equivalent static method is not adequate in capturing the torsional effects and the elastic modal response spectrum analysis method is generally adequate for some common parameters. Record-to-record variation in maximum displacement demand on the structures with different degrees of torsional response is considered in a simple way. Bidirectional torsional response is then considered. Bidirectional eccentricity and excitation has varying effects on the torsional response; however, it generally increases the weak and strong edges displacements. The proposed method is then generalized to consider the bidirectional torsion due to bidirectional stiffness/strength eccentricity and bidirectional seismic excitation. The method is shown to predict displacements conservatively; however, the conservatism decreases slightly for cases with bidirectional excitation compared to those subject to unidirectional excitation. In is shown that the roof displacement of multi-storey structures with torsional response can be predicted by considering the first mode of vibration. The method is then further generalized to estimate torsional effects on multi-storey structure displacement demands. The proposed procedure is tested multi-storey structures and shown to predict the displacements with a good accuracy and conservatively. For buildings which twist in plan during earthquake shaking, the effect of P-Δλ action is evaluated and recommendations for design are made. P-Δλ has more significant effects on systems with small post- yield stiffness. Therefore, system stability coefficient is shown not to be the best indicator of the importance of P-Δλ and it is recommended to use post-yield stiffness of system computed with allowance for P-Δλ effects. For systems with torsional response, the global system stability coefficient and post- yield stiffness ration do not reflect the significance of P-Δλ effects properly. Therefore, for torsional systems individual seismic force resisting systems should be considered. Accuracy of MRSA is investigated and it is found that the MRSA is not always conservative for estimating the centre of mass and strong edge displacements as well as displacements of ductile systems with strength eccentricity larger than stiffness eccentricity. Some modifications are proposed to get the MRSA yields a conservative estimation of displacement demands for all cases.
Observations of out-of-plane (OOP) instability in the 2010 Chile earthquake and in the 2011 Christchurch earthquake resulted in concerns about the current design provisions of structural walls. This mode of failure was previously observed in the experimental response of some wall specimens subjected to in-plane loading. Therefore, the postulations proposed for prediction of the limit states corresponding to OOP instability of rectangular walls are generally based on stability analysis under in-plane loading only. These approaches address stability of a cracked wall section when subjected to compression, thereby considering the level of residual strain developed in the reinforcement as the parameter that prevents timely crack closure of the wall section and induces stability failure. The New Zealand code requirements addressing the OOP instability of structural walls are based on the assumptions used in the literature and the analytical methods proposed for mathematical determination of the critical strain values. In this study, a parametric study is conducted using a numerical model capable of simulating OOP instability of rectangular walls to evaluate sensitivity of the OOP response of rectangular walls to variation of different parameters identified to be governing this failure mechanism. The effects of wall slenderness (unsupported height-to-thickness) ratio, longitudinal reinforcement ratio of the boundary regions and length on the OOP response of walls are evaluated. A clear trend was observed regarding the influence of these parameters on the initiation of OOP displacement, based on which simple equations are proposed for prediction of OOP instability in rectangular walls.
In response to the February 2011 earthquake, Parliament enacted the Canterbury Earthquake Recovery Act. This emergency legislation provided the executive with extreme powers that extended well beyond the initial emergency response and into the recovery phase. Although New Zealand has the Civil Defence Emergency Management Act 2002, it was unable to cope with the scale and intensity of the Canterbury earthquake sequence. Considering the well-known geological risk facing the Wellington region, this paper will consider whether a standalone “Disaster Recovery Act” should be established to separate an emergency and its response from the recovery phase. Currently, Government policy is to respond reactively to a disaster rather than proactively. In a major event, this typically involves the executive being given the ability to make rules, regulations and policy without the delay or oversight of normal legislative process. In the first part of this paper, I will canvas what a “Disaster Recovery Act” could prescribe and why there is a need to separate recovery from emergency. Secondly, I will consider the shortfalls in the current civil defence recovery framework which necessitates this kind of heavy governmental response after a disaster. In the final section, I will examine how
A Christchurch man with terminal cancer is using his final days to battle his insurance company, a decade on from the deadly earthquakes. Brian Shaw owns an apartment that's in a block of 11. They were all damaged in 2011. Shaw is a building consent officer. He says getting technical reports and chasing a settlement with insurer Vero has already cost the unit owners about $400,000, and they still have not even made it to court. On Friday morning he will be protesting outside Vero's Christchurch office, along with other unhappy customers.