
A blog by an ex-employee of the Earthquake Commission discussing flaws in its handling of insurance claims made as the result of the Canterbury earthquakes of 2010 and 2011.
Information on damage caused by the Canterbury earthquakes of 2010 and 2011, for homeowners, tenants, insurers, lawyers, realtors, builders, developers, engineers and building consent authorities.
Earthquake damage. As a result of the September 2010 earthquake, with further damage from the February 2011 event.
Earthquake damage. As a result of the September 2010 earthquake, with further damage from the February 2011 event.
Earthquake damage. As a result of the September 2010 earthquake, with further damage from the February 2011 event.
None
Blog from Christchurch business-owner Nicky Arts detailing the rebuild of the Christchurch CBD following the earthquakles of 2010 and 2011.
One framed certificate issued to SCIRT in 2013 to mark winning The Press Champion Canterbury Supreme Award in the Medium-Large Enterprise category.
Official site of the New Zealand Ministry of Education, in association with the Tertiary Education Commission (TEC) on education renewal in greater Christchurch in the wake of the earthquakes of 2010 and 2011.
Christchurch City Council website on the infrastructure rebuild of Christchurch following the 2010 and 2011 earthquakes. Includes news; information on SMART building; projects related to rebuilding of facilities, transport, suburban centres and the central city.
The same view as the previous photo. Building demolished after the earthquake of 2011!
One green koru shaped trophy issued to SCIRT in 2013 to mark winning The Press Champion Canterbury Supreme Award in the Medium-Large Enterprise category. Includes storage box, envelope and leaflet.
Shows a hand lifting a house up from the ground, as the earth shakes and rumbles around it. A voice in the earth says, 'I'm still here'. Refers to ongoing earthquakes and aftershocks following the devastating 2010 and 2011 earthquakes in Canterbury. Quantity: 1 digital cartoon(s).
This poster provides a comparison between the strong ground motions observed in the 22 February 2011 Mw6.3 Christchurch earthquake with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. The destuction resulting from both of these events has been well documented, although tsunami was the principal cause of damage in the latter event, and less attention has been devoted to the impact of earthquake-induced ground motions. Despite Tokyo being located over 100km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were significant enough to cause structural damage and also significant liquefaction to loose reclaimed soils in Tokyo Bay. The author was fortunate enough (from the perspective of an earthquake engineer) to experience first-hand both of these events. Following the Tohoku event, the athor conducted various ground motion analyses and reconniassance of the Urayasu region in Tokyo Bay affected by liquefaction in collaboration with Prof. Kenji Ishihara. This conference is therefore a fitting opportunity in which to discuss some of authors insights obtained as a result of this first hand knowledge. Figure 1 illustrates the ground motions recorded in the Christchurch CBD in the 22 February 2011 and 4 September 2010 earthquakes, with that recorded in Tokyo Bay in the 11 March 2011 Tohoku earthquake. It is evident that these three ground motions vary widely in their amplitude and duration. The CBGS ground motion from the 22 February 2011 event has a very large amplitude (nearly 0.6g) and short duration (approx. 10s of intense shaking), as a result of the causal Mw6.3 rupture at short distance (Rrup=4km). The CBGS ground motion from the 4 September 2010 earthquake has a longer duration (approx. 30s of intense shaking), but reduced acceleration amplitude, as a result of the causal Mw7.1 rupture at a short-to-moderate distance (Rrup=14km). Finally, the Urayasu ground motion in Tokyo bay during the 11 March 2011 Tohoku earthquake exhibits an acceleration amplitude similar to the 4 September 2010 CBGS ground motion, but a significantly larger duration (approx 150s of intense shaking). Clearly, these three different ground motions will affect structures and soils in different ways depending on the vibration characteristics of the structures/soil, and the potential for strength and stiffness degradation due to cumulative effects. Figure 2 provides a comparison between the arias intensities of the several ground motion records from the three different events. It can be seen that the arias intensities of the ground motions in the Christchurch CBD from the 22 February 2011 earthquake (which is on average AI=2.5m/s) is approximately twice that from the 4 September 2010 earthquake (average AI≈1.25). This is consistent with a factor of approximately 1.6 obtained by Cubrinovski et al. (2011) using the stress-based (i.e.PGA-MSF) approach of liquefaction triggering. It can also be seen that the arias intensity of the ground motions recorded in Tokyo during the 2011 Tohoku earthquake are larger than ground motions in the Christchurch CBD from the 4 September 2011 earthquake, but smaller than those of the 22 February 2011 earthquake. Based on the arias intensity liquefaction triggering approach it can therefore be concluded that the ground motion severity, in terms of liquefaction potential, for the Tokyo ground motions is between those ground motions in Christchurch CBD from the 4 September 2010 and 22 February 2011 events.
A video of an interview with James Jameson about the lack of access to his apartment in the Victoria Apartments. Many of Jameson's possessions have been trapped in the building since the 22 February 2011 earthquake, including irreplaceable art and book collections. After the earthquake, Jameson was given a couple of hours to retrieve his computer and other essentials, but he has not been allowed in since. Jameson talks about the lack of communication from the authorities , the likelihood that his possessions have been ruined, and his inability to make an insurance claim until he knows he definitely cannot retrieve his possessions.
This report examines and compares case studies of labour market policy responses in APEC economies to natural disasters. It first reviews the policies and practice within APEC economies and internationally in managing the labour market effects of natural disasters. By using comparative case studies, the report then compares recent disaster events in the Asia-Pacific region, including: - the June 2013 Southern Alberta floods in Canada; - the 2010 and 2011 Queensland floods in Australia; - the 2010 and 2011 Canterbury earthquakes in New Zealand; - the 2011 Great East Japan Earthquake and Tsunami in Japan; and - the 2008 Wenchuan earthquake in China.
In the period between September 2010 and December 2011, Christchurch was shaken by a series of strong earthquakes including the MW7.1 4 September 2010, Mw 6.2 22 February 2011, MW6.2 13 June 2011 and MW6.0 23 December 2011 earthquakes. These earthquakes produced very strong ground motions throughout the city and surrounding areas that resulted in soil liquefaction and lateral spreading causing substantial damage to buildings, infrastructure and the community. The stopbank network along the Kaiapoi and Avon River suffered extensive damage with repairs projected to take several years to complete. This presented an opportunity to undertake a case-study on a regional scale of the effects of liquefaction on a stopbank system. Ultimately, this information can be used to determine simple performance-based concepts that can be applied in practice to improve the resilience of river protection works. The research presented in this thesis draws from data collected following the 4th September 2010 and 22nd February 2011 earthquakes. The stopbank damage is categorised into seven key deformation modes that were interpreted from aerial photographs, consultant reports, damage photographs and site visits. Each deformation mode provides an assessment of the observed mechanism of failure behind liquefaction-induced stopbank damage and the factors that influence a particular style of deformation. The deformation modes have been used to create a severity classification for the whole stopbank system, being ‘no or low damage’ and ‘major or severe damage’, in order to discriminate the indicators and factors that contribute to ‘major to severe damage’ from the factors that contribute to all levels of damage a number of calculated, land damage, stopbank damage and geomorphological parameters were analysed and compared at 178 locations along the Kaiapoi and Avon River stopbank systems. A critical liquefiable layer was present at every location with relatively consistent geotechnical parameters (cone resistance (qc), soil behaviour type (Ic) and Factor of Safety (FoS)) across the study site. In 95% of the cases the critical layer occurred within two times the Height of the Free Face (HFF,). A statistical analysis of the geotechnical factors relating to the critical layer was undertaken in order to find correlations between specific deformation modes and geotechnical factors. It was found that each individual deformation mode involves a complex interplay of factors that are difficult to represent through correlative analysis. There was, however, sufficient data to derive the key factors that have affected the severity of deformation. It was concluded that stopbank damage is directly related to the presence of liquefaction in the ground materials beneath the stopbanks, but is not critical in determining the type or severity of damage, instead it is merely the triggering mechanism. Once liquefaction is triggered it is the gravity-induced deformation that causes the damage rather than the shaking duration. Lateral spreading and specifically the depositional setting was found to be the key aspect in determining the severity and type of deformation along the stopbank system. The presence or absence of abandoned or old river channels and point bar deposits was found to significantly influence the severity and type of deformation. A review of digital elevation models and old maps along the Kaiapoi River found that all of the ‘major to severe’ damage observed occurred within or directly adjacent to an abandoned river channel. Whilst a review of the geomorphology along the Avon River showed that every location within a point bar deposit suffered some form of damage, due to the depositional environment creating a deposit highly susceptible to liquefaction.
Roger Sutton, former chief executive of the the power lines company, Orion and since June 2011 Chief Executive Officer of the Canterbury Earhquake Recovery Authority, is shown in a straitjacket, raving. An unseen interviewer asks him how it feels after 'two years in the job'. Roger Sutton's work in leading the Earthquake Authority after the February earthquake was extremely stressful, considering the magnitude of the task. Quantity: 1 digital cartoon(s).
Shows a throng of sex workers rushing back following the announcement that 'Manchester Street's open!'. Prior to the Christchurch earthquake in February 2011 Manchester Street was the focus of street prostitution. On 13 April 2013 the Canterbury Earthquake Recovery Authority (CERA) announced: 'A temporary change to the cordon tonight sees Manchester Street open all the way through for the first time in over two years'. Quantity: 1 digital cartoon(s).
One model of the Temple for Christchurch with a rectangular base of Jarrah and solid silver conical shapes and wave like walls representing the movement of the 22 February 2011 earthquake. Based on the Temple for Christchurch sculpture that was designed by Hippathy Valentine.
The earthquakes that struck Ōtautahi/Christchurch began September 2010 and continued throughout2012 with the worse shock being February 22, 2011. The extended ‘seismic event’ radically altered thegeophysical and socio-cultural environments of the city. This working paper presents a broad array of datadescribing the impacts of the disaster on Māori. These data frame the results of small email surveyconducted 18 months after the most destructive February 22, 2011. This survey followed two projectsinvestigating the resilience of Māori to the disaster (Lambert & Mark-Shadbolt, 2011; Lambert & Mark-Shadbolt, 2012; Lambert, Mark-Shadbolt, Ataria, & Black, 2012). Results show that while the termresilience has become common to the point of cliché, the Māori experience thus far is best described asendurance.
None
A video of the reopening ceremony for the Heritage Hotel in Cathedral Square, which has been closed since the 22 February 2011 earthquake. The video shows Governor General Sir Jerry Mateparae opening the building while a string trio plays. It also includes footage of a speech by the Governor General, and a tour of the hotel.
Some Canterbury homeowners say their houses are dropping in value because of misleading estimates of damage to foundations from the 2010 and 2011 earthquakes.
At least two broken pieces from the Scott statue rest in the Canterbury Museum. The statue toppled in the 22nd February 2011 earthquake.
The impact of the Canterbury earthquake sequence of 2010-12 and its aftermath has been enormous. This inventory lists some of the thousands of community-led groups and initiatives across the region that have developed or evolved as a result of the quake. This inventory is the third such inventory to have been produced. The Christchurch Earthquake Activity Inventory was released by Landcare Research in May 2011, three months after the devastating 22 February 2011 earthquake. The second inventory, entitled An Inventory of Community-led Recovery Initiatives in Canterbury, was collated by Bailey Peryman and Dr Suzanne Vallance (Lincoln University) approximately one year after the February earthquake. The research for this third inventory was undertaken over a four month period from June to September 2013, and was conducted primarily through online searches.This research was undertaken with funding support from the Natural Hazards Platform and GNS, New Zealand.
A bus tours a city street with destroyed schools either side. The guide points out destruction on the right from earthquakes and on the left from Hekia Parata. Wider context is the ongoing impact of the Christchurch February 2011 earthquake. The implication is that the earthquake caused physical damage to some schools and that the Minister for Education is responsible for destroying others with her announcement of school closures in Christchurch on 18 February 2013. Quantity: 1 digital cartoon(s).
The old Esplanade Tavern is being demolished due to damage suffered in the earthquakes of 2011. Another one of New Brighton's iconic buildings to go.
The basement of the "Price Waterhouse" building after demolition after the Christchurch earthquakes...
Christchurch and Canterbury suffered significant housing losses due to the earthquakes. Estimates from the Earthquake Commission (EQC) (2011) suggest that over 150,000 homes (around three quarters of Christchurch housing stock) sustained damage from the earthquakes. Some areas of Christchurch have been declared not suitable for rebuilding, affecting more than 7,500 residential properties.