Search

found 6 results

Audio, Radio New Zealand

A complaint against an engineer whose firm designed the CTV building that collapsed in the Christchurch earthquake will be heard by a disciplinary committee on Monday. One-hundred-and-fifteen people were killed when the six-storey building came down in February 2011. Dr Alan Reay lost a High Court bid to stop the hearing. Reporter Anna Sargent spoke to Corin Dann.

Audio, Radio New Zealand

The families of the victims of the CTV building collapse in Christchurch have told an engineering disciplinary hearing they've been waiting 12 years for accountability. The building collapsed in the February 2011 earthquake killing 115 people. It was designed by Dr Alan Reay's firm - Reay was criticised by the Earthquake Royal Commission for handing sole responsibility of it to an inexperienced employee. Reay has tried to stop the disciplinary process going ahead but it got underway in Christchurch today. Reporter Anna Sargent spoke to Charlotte Cook.

Audio, Radio New Zealand

A panel with Michael Bell, Steph Walker and Kiri Jarden. It’s almost 13 years since the devastating earthquake of 22 February 2011, which forced 70 percent of the Ōtautahi Christchurch CBD to be demolished. While the rebuild has been a slow and often difficult process in visions meeting reality, there is also much to celebrate in the city taking up the opportunity, through art and design, to remake it as a place for all.

Audio, Radio New Zealand

Twelve years after the CTV building collapsed during the Christchurch earthquake, families of the victims killed inside have told an engineering disciplinary hearing they want justice and accountability. 115 people died when the six-storey building came down in February 2011. A complaint against an engineer whose firm designed the building is being heard by an Engineering New Zealand disciplinary committee. Dr Alan Reay lost a High Court bid to stop the hearing. Anna Sargent reports.

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of applied aspects in ground motion simulation validation via the response of complex structures. In particular, the following topics are addressed: (i) the investigation of similarity between recorded and simulated ground motions using code-based 3D irregular structural response analysis, (ii) the development of a framework for ground motion simulations validation to identify the cause of differences between paired observed and simulated dataset, and (iii) the illustration of the process of using simulations for seismic performance-based assessment. The application of simulated ground motions is evaluated for utilisation in engineering practice by considering responses of 3D irregular structures. Validation is performed in a code-based context when the NZS1170.5 (NZS1170.5:2004, 2004) provisions are followed for response history analysis. Two real buildings designed by engineers and physically constructed in Christchurch before the 2010-2011 Canterbury earthquake sequence are considered. The responses are compared when the buildings are subjected to 40 scaled recorded and their subsequent simulated ground motions selected from 22 February 2011 Christchurch. The similarity of recorded and simulated responses is examined using statistical methods such as bootstrapping and hypothesis testing to determine whether the differences are statistically significant. The findings demonstrate the applicability of simulated ground motion when the code-based approach is followed in response history analysis. A conceptual framework is developed to link the differences between the structural response subjected to simulated and recorded ground motions to the differences in their corresponding intensity measures. This framework allows the variability to be partitioned into the proportion that can be “explained” by the differences in ground motion intensity measures and the remaining “unexplained” variability that can be attributed to different complexities such as dynamic phasing of multi-mode response, nonlinearity, and torsion. The application of this framework is examined through a hierarchy of structures reflecting a range of complexity from single-degree-of-freedom to 3D multi-degree-of-freedom systems with different materials, dynamic properties, and structural systems. The study results suggest the areas that ground motion simulation should focus on to improve simulations by prioritising the ground motion intensity measures that most clearly account for the discrepancies in simple to complex structural responses. Three approaches are presented to consider recorded or simulated ground motions within the seismic performance-based assessment framework. Considering the applications of ground motions in hazard and response history analyses, different pathways in utilising ground motions in both areas are explored. Recorded ground motions are drawn from a global database (i.e., NGA-West2 Ancheta et al., 2014). The NZ CyberShake dataset is used to obtain simulations. Advanced ground motion selection techniques (i.e., generalized conditional intensity measure, GCIM) are used for ground motion selection at a few intensity levels. The comparison is performed by investigating the response of an example structure (i.e., 12-storey reinforced concrete special moment frame) located in South Island, NZ. Results are compared and contrasted in terms of hazard, groundmotion selection, structural responses, demand hazard, and collapse risk, then, the probable reasons for differences are discussed. The findings from this study highlight the present opportunities and shortcomings in using simulations in risk assessment. i