QuakeStory 700
Articles, UC QuakeStudies
A story submitted by Hilary Lakeman to the QuakeStories website.
A story submitted by Hilary Lakeman to the QuakeStories website.
Summary of oral history interview with Emily about her experiences of the Canterbury earthquakes.
A story submitted by Lin to the QuakeStories website.
A story submitted by Joan Curry to the QuakeStories website.
An entry from Jennifer Middendorf's blog for 25 August 2014 entitled, "Tohoku 2011".
Summary of oral history interview with Alice Ridley about her experiences of the Canterbury earthquakes.
An entry from Deb Robertson's blog for 26 August 2014 entitled, "Election time".The entry was downloaded on 2 November 2016.
A story submitted by Sue Hamer to the QuakeStories website.
An entry from Ruth Gardner's Blog for 02 April 2014 entitled, "Fencing for the Future".
A copy of the CanCERN online newsletter published on 21 February 2014
A copy of the CanCERN online newsletter published on 13 June 2014
A copy of the CanCERN online newsletter published on 23 May 2014
A copy of the CanCERN online newsletter published on 7 February 2014
A copy of the CanCERN online newsletter published on 20 June 2014
A copy of the CanCERN online newsletter published on 28 March 2014
A copy of the CanCERN online newsletter published on 4 April 2014
A copy of the CanCERN online newsletter published on 28 February 2014
A copy of the CanCERN online newsletter published on 17 January 2014
A copy of the CanCERN online newsletter published on 16 May 2014
A copy of the CanCERN online newsletter published on 14 March 2014
A copy of the CanCERN online newsletter published on 2 May 2014
A copy of the CanCERN online newsletter published on 9 May 2014
A copy of the CanCERN online newsletter published on 18 April 2014
A copy of the CanCERN online newsletter published on 7 March 2014
A copy of the CanCERN online newsletter published on 31 January 2014
A copy of the CanCERN online newsletter published on 6 June 2014
Case study analysis of the 2010-2011 Canterbury Earthquake Sequence (CES), which particularly impacted Christchurch City, New Zealand, has highlighted the value of practical, standardised and coordinated post-earthquake geotechnical response guidelines for earthquake-induced landslides in urban areas. The 22nd February 2011 earthquake, the second largest magnitude event in the CES, initiated a series of rockfall, cliff collapse and loess failures around the Port Hills which severely impacted the south-eastern part of Christchurch. The extensive slope failure induced by the 22nd February 200 earthquake was unprecedented; and ground motions experienced significantly exceeded the probabilistic seismic hazard model for Canterbury. Earthquake-induced landslides initiated by the 22nd February 2011 earthquake posed risk to life safety, and caused widespread damage to dwellings and critical infrastructure. In the immediate aftermath of the 22nd February 2011 earthquake, the geotechnical community responded by deploying into the Port Hills to conduct assessment of slope failure hazards and life safety risk. Coordination within the voluntary geotechnical response group evolved rapidly within the first week post-earthquake. The lack of pre-event planning to guide coordinated geotechnical response hindered the execution of timely and transparent management of life safety risk from coseismic landslides in the initial week after the earthquake. Semi-structured interviews were conducted with municipal, management and operational organisations involved in the geotechnical response during the CES. Analysis of interview dialogue highlighted the temporal evolution of priorities and tasks during emergency response to coseismic slope failure, which was further developed into a phased conceptual model to inform future geotechnical response. Review of geotechnical responses to selected historical earthquakes (Northridge, 1994; Chi-Chi, 1999; Wenchuan, 2008) has enabled comparison between international practice and local response strategies, and has emphasised the value of pre-earthquake preparation, indicating the importance of integration of geotechnical response within national emergency management plans. Furthermore, analysis of the CES and international earthquakes has informed pragmatic recommendations for future response to coseismic slope failure. Recommendations for future response to earthquake-induced landslides presented in this thesis include: the integration of post-earthquake geotechnical response with national Civil Defence and Emergency Management; pre-earthquake development of an adaptive management structure and standard slope assessment format for geotechnical response; and emergency management training for geotechnical professionals. Post-earthquake response recommendations include the development of geographic sectors within the area impacted by coseismic slope failure, and the development of a GIS database for analysis and management of data collected during ground reconnaissance. Recommendations provided in this thesis aim to inform development of national guidelines for geotechnical response to earthquake-induced landslides in New Zealand, and prompt debate concerning international best practice.
The Canterbury earthquakes of 2010 and 2011 have shone the spotlight on a number of tax issues. These issues, and in particular lessons learned from them, will be relevant for revenue authorities, policymakers and taxpayers alike in the broader context of natural disasters. Issues considered by this paper include the tax treatment of insurance monies. For example, building owners will receive pay-outs for destroyed assets and buildings which have been depreciated. Where the insurance payment is more than the adjusted tax value, there will be a taxable "gain on sale" (or depreciation recovery income). If the building owner uses those insurance proceeds to purchase a replacement asset, legislative amendments specifically enacted following the earthquakes provide that rollover relief of the depreciation recovery income is available. The tax treatment of expenditure to seismically strengthen a building is another significant issue faced by building owners. Case law has determined that this expenditure will usually be capital expenditure. In the past such costs could be capitalised to the building and depreciated accordingly. However, since the 2011-2012 income year owners have been prohibited from claiming depreciation on buildings and therefore currently no deduction is available for such strengthening expenditure (whether immediate or deferred). This has significant potential implications for landlords throughout New Zealand facing significant seismic retrofit costs. Incentives, or some form of financial support, whether delivered through the tax system or some other mechanism may be required. International Financial Reporting Standards (IFRS) require insurance proceeds, including reimbursement for expenditure of a capital nature, be reported as income while expenditure itself is not recorded as a current period expense. This has the effect of overstating current income and creating a larger variation between reported income for accounting and taxation purposes. Businesses have obligations to maintain certain business records for tax purposes. Reconstructing records destroyed by a natural disaster depends on how the information was originally stored. The earthquakes have demonstrated the benefits of ‘off-site’ (outside Canterbury) storage, in particular electronic storage. This paper considers these issues and the Inland Revenue Department (Inland Revenue) Standard Practice Statement which deals with inter alia retention of business records in electronic format and offshore record storage. Employer provided accommodation is treated as income to the benefitting employee. A recent amendment to the Income Tax Act 2007 retrospectively provides that certain employer provided accommodation is exempt from tax. The time aspect of these rules is extended where the employee is involved in the Canterbury rebuild and comes from outside the region.
The UC CEISMIC Canterbury Earthquakes Digital Archive contains tens of thousands of high value cultural heritage items related to a long series of earthquakes that hit Canterbury, New Zealand, from 2010 - 2012. The archive was built by a Digital Humanities team located at the center of the disaster in New Zealand's second largest city, Christchurch. The project quickly became complex, not only in its technical aspects but in its governance and general management. This talk will provide insight into the national and international management and governance frameworks used to successfully build and deliver the archive into operation. Issues that needed to be managed included human ethics, research ethics, stakeholder management, communications, risk management, curation and ingestion policy, copyright and content licensing, and project governance. The team drew heavily on industry-standard project management methods for the basic approach, but built their ecosystem and stakeholder trust on principles derived directly form the global digital humanities community.
The Canterbury earthquakes, which involved widespread damage in the February 2011 event and ongoing aftershocks near the Christchurch central business district (CBD), presented decision-makers with many recovery challenges. This paper identifies major government decisions, challenges, and lessons in the early recovery of Christchurch based on 23 key-informant interviews conducted 15 months after the February 2011 earthquake. It then focuses on one of the most important decisions – maintaining the cordon around the heavily damaged CBD – and investigates its impacts. The cordon displaced 50,000 central city jobs, raised questions about (and provided new opportunities for) the long-term viability of downtown, influenced the number and practice of building demolitions, and affected debris management; despite being associated with substantial losses, the cordon was commonly viewed as necessary, and provided some benefits in facilitating recovery. Management of the cordon poses important lessons for planning for catastrophic urban earthquakes around the world.