Search

found 4 results

Videos, UC QuakeStudies

A video of a dug-out soil pit on a farm near River Road in Lincoln. There is a thick layer of saturated sand between the topsoil and the subsoil where the grass roots end. The saturated soil is collapsing as a result of contractor Tony Fisher, of Fisher Agriculture Ltd, jumping lightly up and down on the edge of the pit.

Videos, UC QuakeStudies

A video of a dug-out soil pit on a farm near River Road in Lincoln. There is a thick layer of saturated sand between the topsoil and the subsoil where the grass roots end. The saturated soil is collapsing as a result of contractor Tony Fisher, of Fisher Agriculture Ltd, having jumped lightly up and down on the edge of the pit.

Videos, UC QuakeStudies

A video of contractor Tony Fisher, of Fisher Agricultural Ltd, jumping lightly up and down on the edge of a dug-out soil pit on a farm near River Road in Lincoln. There is a thick layer of saturated sand between the topsoil and the subsoil where the grass roots end. The saturated soil starts to collapse as a result of the movement.

Research papers, The University of Auckland Library

During the Christchurch earthquake of February 2011, several midrise reinforced concrete masonry (RCM) buildings showed performance levels that fall in the range of life safety to near collapse. A case study of one of these buildings, a six-story RCM building deemed to have reached the near collapse performance level, is presented in this paper. The RCM walls on the second floor failed due to toe crushing, reducing the building's lateral resistance in the east–west direction. A three-dimensional (3-D) nonlinear dynamic analysis was conducted to simulate the development of the governing failure mechanism. Analysis results showed that the walls that were damaged were subjected to large compression loads during the earthquake, which caused an increase in their in-plane lateral strength but reduced their ductility capacity. After toe crushing failure, axial instability of the model was prevented by a redistribution of gravity loads. VoR - Version of Record