Search

found 17 results

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Gorge Road School held a 'Red & Black' themed dress day and a gold coin donation (which they made into a coin trail) to raise funds for earthquake-stricken Canterbury. Pictured with their coins are Logan Marshall (5) on the left and Aaron Hart (6), with school pupils in behind. The fifty-pupil school managed to raise $136.00".

Videos, UC QuakeStudies

A video of Stone Works removing a time capsule from the foundations of the old Press Building in Cathedral Square. The time capsule was found in the foundation stone of the building. It contained a bundle of newspapers from April 1907, handwritten notes, and coins.

Videos, UC QuakeStudies

A video about the time capsule found in the foundations of the former Press Building in Cathedral Square. Heritage consultant Jenny May shows the contents of the time capsule, including several coins, newspaper articles, and messages. The capsule was left by the architects and the people working on the building, rather than the editors of The Press.

Images, UC QuakeStudies

Member of the public using the Dance-O-Mat, a dance floor on a vacant site with coin operated light and music player. This was a project by Gap Filler who wanted to give the Christchurch community a unique dance experience whilst bringing life to our broken city.

Images, Alexander Turnbull Library

Scientists stand before a model that will predict earthquakes. The model is a large arm attached to wires and switches with a thumb that flicks coins '"Heads" we have big quake at five-o-clock... "tails" we don't'. Context: short term predictions (hours to days) are in general unlikely to be possible, at present. Relates to the Christchurch earthquakes which experts have said could go on for years. Quantity: 1 digital cartoon(s).

Videos, NZ On Screen

This promotional travelogue, made for the Christchurch City Council, shows off the city and its environs. Filmed at a time when New Zealand’s post-war economy was booming as it continued its role as a farmyard for the “Old Country”, it depicts Christchurch as a prosperous city, confident in its green and pleasant self-image as a “better Britain” (as James Belich coined NZ’s relationship to England), and architecturally dominated by its cathedrals, churches and schools. Many of these buildings were severely damaged or destroyed in the earthquakes of 2010 and 2011.

Research papers, University of Canterbury Library

In the aftermath of the 2010-2011 Canterbury Earthquake Sequence (CES), the location of Christchurch-City on the coast of the Canterbury Region (New Zealand) has proven crucial in determining the types of- and chains of hazards that impact the city. Very rapidly, the land subsidence of up to 1 m (vertical), and the modifications of city’s waterways – bank sliding, longitudinal profile change, sedimentation and erosion, engineered stop-banks… - turned rainfall and high-tides into unprecedented floods, which spread across the eastern side of the city. Within this context, this contribution presents two modeling results of potential floods: (1) results of flood models and (2) the effects of further subsidence-linked flooding – indeed if another similar earthquake was to strike the city, what could be the scenarios of further subsidence and then flooding. The present research uses the pre- and post-CES LiDAR datasets, which have been used as the boundary layer for the modeling. On top of simple bathtub model of inundation, the river flood model was conducted using the 2-D hydrodynamic code NAYS-2D developed at the University of Hokkaido (Japan), using a depth-averaged resolution of the hydrodynamic equations. The results have shown that the area the most at risk of flooding are the recent Holocene sedimentary deposits, and especially the swamplands near the sea and in the proximity of waterways. As the CES drove horizontal and vertical displacement of the land-surface, the surface hydrology of the city has been deeply modified, increasing flood risks. However, it seems that scientists and managers haven’t fully learned from the CES, and no research has been looking at the potential future subsidence in further worsening subsidence-related floods. Consequently, the term “coastal quake”, coined by D. Hart is highly topical, and most especially because most of our modern cities and mega-cities are built on estuarine Holocene sediments.