A video of a conversation between John Hamilton, National Controller of the Civil Defence Emergency Response, and Dr Sonia Giovinazzi, Research Fellow at the Department of Civil and Natural Resource Engineering at the University of Canterbury. Hamilton and Giovinazzi discuss the Civil Defence's response to the 22 February 2011 earthquake and the lessons that they learned.The video includes footage from the Ministry of Civil Defence (licenced under Creative Commons Attribute 3.0 New Zealand).
Severe liquefaction was repeatedly observed during the 2010 - 2011 C hristchurch earthquake s , particularly affecting deposits of fine sands and silty sands of recent fluvial or estuarine origin. The effects of liquefaction included major sliding of soil tow ard water bodies ( i.e. lateral spreading ) rang ing from centimetres to several metres. In this paper, a series of undrained cyclic torsional shear tests were conducted to evaluate the liquefaction and extremely large deformation properties of Christchurch b oiled sand . In these tests, the simple shear conditions were reproduced in order to apply realistic stress conditions that soil s experience in the field during horizontal seismic shaking. Several hollow cylindrical medium dense specimens ( D r = 50%) were pr epared by pluviation method, isotropically consolidated at an effective stress of 100 kPa and then cyclically sheared under undrained conditions up to 10 0% double amplitude shear strain (γ DA ) . The cyclic strength at different levels of γ DA of 7.5%, 15%, 3 0 % and 6 0%, development of extremely large post - liquefaction deformation and shear strain locali s ation properties were assessed from the analysis of the effective stress paths and stress - strain responses . To reveal possible distinctiveness, the cyclic undra ined behaviour of CHCH boiled sand was compared with that of Toyoura sand previously examined under similar testing conditions
Data from the 2010-2011 Canterbury earthquake sequence (CES) provides an unprecedented opportunity to assess and advance the current state of practice for evaluating liquefaction triggering. Towards this end, select case histories from the CES are used herein to assess the predictive capabilities of three alternative CPT-based simplified liquefaction evaluation procedures: Robertson and Wride (1998); Moss et al. (2006); and Idriss and Boulanger (2008). Additionally, the Liquefaction Potential Index (LPI) framework for predicting the severity of surficial liquefaction manifestations is also used to assess the predictive capabilities of the liquefaction evaluation procedures. Although it is not without limitations, use of the LPI framework for this purpose circumvents the need for selecting “critical” layers and their representative properties for study sites, which inherently involves subjectivity and thus has been a point of contention among researchers. It was found that while all the assessed liquefaction triggering evaluation procedures performed well for the parameter ranges of the sites analyzed, the procedure proposed by Idriss and Boulanger (2008) yielded predictions that are more consistent with field observations than the other procedures. However, use of the Idriss and Boulanger (2008) procedure in conjunction with a Christchurch-specific correlation to estimate fines content showed a decreased performance relative to using a generic fines content correlation. As a result, the fines correction for the Idriss and Boulanger (2008) procedure needs further study.
Deep shear wave velocity (Vs) profiles (>400 m) were developed at 14 sites throughout Christchurch, New Zealand using surface wave methods. This paper focuses on the inversion of surface wave data collected at one of these sites, Hagley Park. This site is located on the deep soils of the Canterbury Plains, which consist of alluvial gravels inter-bedded with estuarine and marine sands, silts, clays and peats. Consequently, significant velocity contrasts exist at the interface between geologic formations. In order to develop realistic velocity models in this complex geologic environment, a-priori geotechnical and geologic data were used to identify the boundaries between geologic formations. This information aided in developing the layering for the inversion parameters. Moreover, empirical reference Vs profiles based on material type and confining pressure were used to develop realistic Vs ranges for each layer. Both the a-priori layering information and the reference Vs curves proved to be instrumental in generating realistic velocity models that account for the complex inter-bedded geology in the Canterbury Plains.
This paper presents an overview of the soil profile characteristics at strong motion station (SMS) locations in the Christchurch Central Business District (CBD) based on recently completed geotechnical site investigations. Given the variability of Christchurch soils, detailed investigations were needed in close vicinity to each SMS. In this regard, CPT, SPT and borehole data, and shear wave velocity (Vs) profiles from surface wave dispersion data in close vicinity to the SMSs have been used to develop detailed representative soil profiles at each site and to determine site classes according to the New Zealand standard NZS1170.5. A disparity between the NZS1170.5 site classes based on Vs and SPT N60 investigation techniques is highlighted, and additional studies are needed to harmonize site classification based on these techniques. The short period mode of vibration of soft deposits above gravels, which are found throughout Christchurch, are compared to the long period mode of vibration of the entire soil profile to bedrock. These two distinct modes of vibration require further investigation to determine their impact on the site response. According to current American and European approaches to seismic site classification, all SMSs were classified as problematic soil sites due to the presence of liquefiable strata, soils which are not directly accounted for by the NZS1170.5 approach.
A photograph of students falling through a bridge into the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of eight students falling through a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of four students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of three students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of seven students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of six students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of two students walking on a bridge across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of three students standing on a bridge across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of five students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of five students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of eight students falling through a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of eight students falling through a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of a student falling through a bridge into the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of two students walking on a bridge across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of a student walking on a bridge across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of two students walking on a bridge across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of a student walking on a bridge across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of two students walking on a bridge across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of eight students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of six students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of seven students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of seven students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of six students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of six students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of five students on a bridge they have constructed across the Avon River, outside the UCSA building. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.