A document which provides simple, easy to understand environmental advice and guidance for civil construction contractors.
A document which describes the process that SCIRT took to work with industry organisations to develop a civil trade qualification.
A paper for the SCIRT Board which requests that the Board provide support to SCIRT's Training Team with assisting to develop a civil trade qualification.
A presentation for the SCIRT Board which outlines the process that SCIRT's Training Team intended to take towards assisting with developing a civil trade qualification.
An award application for the Civil Contractors New Zealand 2015 awards. SCIRT was a finalist in the "Connexis Company Training and Development Award - Large Company" category.
A member of the University of Canterbury's Civil Defence team escorts staff to retrieve essential items from their offices.
An award application for the Civil Contractors NZ Hirepool Construction Excellence Awards 2015 which details Downer's approach to repairing the Armagh Street bridge.
University of Canterbury staff members prepare to be escorted to their buildings by Civil Defence members in order to retrieve essential items from their offices.
A document which outlines SCIRT's best practice approach to recruitment and training.
A paper for the SCIRT Board which requests that the Board provide support to recruit a Project Manager to support the development of a civil trade qualification.
University of Canterbury staff members are escorted by Civil Defence members in order to retrieve essential items from their offices. The photographer comments, "E-learning team collect their stuff".
University of Canterbury staff members are escorted by Civil Defence members in order to retrieve essential items from their offices. The photographer comments, "ICT network admins, Craig Miller and Aaron Eivers".
University of Canterbury staff members are escorted by Civil Defence members in order to retrieve essential items from their offices. The photographer comments, "E-learning team vacate their floor. (Blurry, sorry.)
University of Canterbury ICT staff members prepare to be escorted to buildings by Civil Defence members in order to retrieve computers from offices. The photographer comments, "ICT staff head out to retrieve computers from buildings".
University of Canterbury staff members prepare to be escorted to their buildings by Civil Defence members in order to retrieve essential items from their offices. The photographer comments, "Susan Tull (E-learning), Leigh Davidson (MBA administrator), Bob Reed (Economics)".
An interview with Chris Whitty, Site Manager at the Christchurch Arts Centre, about the recovery of the Townsend Telescope from the rubble of the Observatory tower. The interview was conducted by Sebastian Wilberforce.
University of Canterbury staff members are escorted by Civil Defence members in order to retrieve essential items from their offices. The photographer comments, "E-learning team after clearing their offices. Brendon Stillwell (ICTS tech helping with PCs), Antoine Monti, Susan Tull, Herbert Thomas, Paul Nicholls, Gregor Ronald, Lei Zhang, Jess Hollis".
University of Canterbury staff members are escorted by Civil Defence members in order to retrieve essential items from their offices. The photographer comments, "E-learning team after clearing their offices. Brendon Stillwell (ICTS tech helping with PCs), Antoine Monti, Susan Tull, Herbert Thomas, Paul Nicholls, Gregor Ronald, Lei Zhang, Jess Hollis".
In response to the February 2011 earthquake, Parliament enacted the Canterbury Earthquake Recovery Act. This emergency legislation provided the executive with extreme powers that extended well beyond the initial emergency response and into the recovery phase. Although New Zealand has the Civil Defence Emergency Management Act 2002, it was unable to cope with the scale and intensity of the Canterbury earthquake sequence. Considering the well-known geological risk facing the Wellington region, this paper will consider whether a standalone “Disaster Recovery Act” should be established to separate an emergency and its response from the recovery phase. Currently, Government policy is to respond reactively to a disaster rather than proactively. In a major event, this typically involves the executive being given the ability to make rules, regulations and policy without the delay or oversight of normal legislative process. In the first part of this paper, I will canvas what a “Disaster Recovery Act” could prescribe and why there is a need to separate recovery from emergency. Secondly, I will consider the shortfalls in the current civil defence recovery framework which necessitates this kind of heavy governmental response after a disaster. In the final section, I will examine how
This paper presents on-going challenges in the present paradigm shift of earthquakeinduced ground motion prediction from empirical to physics-based simulation methods. The 2010-2011 Canterbury and 2016 Kaikoura earthquakes are used to illustrate the predictive potential of the different methods. On-going efforts on simulation validation and theoretical developments are then presented, as well as the demands associated with the need for explicit consideration of modelling uncertainties. Finally, discussion is also given to the tools and databases needed for the efficient utilization of simulated ground motions both in specific engineering projects as well as for near-real-time impact assessment.
Nowadays the telecommunication systems’ performance has a substantial impact on our lifestyle. Their operationality becomes even more substantial in a post-disaster scenario when these services are used in civil protection and emergency plans, as well as for the restoration of all the other critical infrastructure. Despite the relevance of loss of functionality of telecommunication networks on seismic resilience, studies on their performance assessment are few in the literature. The telecommunication system is a distributed network made up of several components (i.e. ducts, utility holes, cabinets, major and local exchanges). Given that these networks cover a large geographical area, they can be easily subjected to the effects of a seismic event, either the ground shaking itself, or co-seismic events such as liquefaction and landslides. In this paper, an analysis of the data collected after the 2010-2011 Canterbury Earthquake Sequence (CES) and the 2016 Kaikoura Earthquake in New Zealand is conducted. Analysing these data, information gaps are critically identified regarding physical and functional failures of the telecommunication components, the timeline of repair/reconstruction activities and service recovery, geotechnical tests and land planning maps. Indeed, if these missing data were presented, they could aid the assessment of the seismic resilience. Thus, practical improvements in the post-disaster collection from both a network and organisational viewpoints are proposed through consultation of national and international researchers and highly experienced asset managers from Chorus. Finally, an outline of future studies which could guide towards a more resilient seismic performance of the telecommunication network is presented.