Search

found 3 results

Research papers, University of Canterbury Library

Elevated levels of trace elements in the environment are of great concern because of their persistence, and their high potential to harm living organisms. The exposure of aquatic biota to trace elements can lead to bioaccumulation, and toxicity can result. Furthermore, the transfer of these elements through food chains can result in exposure to human consumers. Sea-fill or coastal fill sites are among the major anthropogenic sources of trace elements to the surrounding marine environment. For example, in the Maldives, Thilafushi Island is a sea-fill site consisting of assorted municipal solid waste, with multiple potential sources of trace elements. However, there is limited data on environmental trace element levels in the Maldives, and although seafood is harvested from close to this site, there is no existing data regarding trace element levels in Maldivian diets. Following the Christchurch earthquakes of 2011,

Research papers, University of Canterbury Library

In the aftermath of the 2010-2011 Canterbury Earthquake Sequence (CES), the location of Christchurch-City on the coast of the Canterbury Region (New Zealand) has proven crucial in determining the types of- and chains of hazards that impact the city. Very rapidly, the land subsidence of up to 1 m (vertical), and the modifications of city’s waterways – bank sliding, longitudinal profile change, sedimentation and erosion, engineered stop-banks… - turned rainfall and high-tides into unprecedented floods, which spread across the eastern side of the city. Within this context, this contribution presents two modeling results of potential floods: (1) results of flood models and (2) the effects of further subsidence-linked flooding – indeed if another similar earthquake was to strike the city, what could be the scenarios of further subsidence and then flooding. The present research uses the pre- and post-CES LiDAR datasets, which have been used as the boundary layer for the modeling. On top of simple bathtub model of inundation, the river flood model was conducted using the 2-D hydrodynamic code NAYS-2D developed at the University of Hokkaido (Japan), using a depth-averaged resolution of the hydrodynamic equations. The results have shown that the area the most at risk of flooding are the recent Holocene sedimentary deposits, and especially the swamplands near the sea and in the proximity of waterways. As the CES drove horizontal and vertical displacement of the land-surface, the surface hydrology of the city has been deeply modified, increasing flood risks. However, it seems that scientists and managers haven’t fully learned from the CES, and no research has been looking at the potential future subsidence in further worsening subsidence-related floods. Consequently, the term “coastal quake”, coined by D. Hart is highly topical, and most especially because most of our modern cities and mega-cities are built on estuarine Holocene sediments.