Search

found 20 results

Images, UC QuakeStudies

A photograph of Celia Wade-Brown, Mayor of Wellington, speaking at a graduation ceremony for more than 40 new civil defence volunteers in the Wellington Town Hall. Members of the Wellington Emergency Management Office team were presented certificates of appreciation during this event. The certificates were presented to the members to honour their involvement in the emergency response to the 22 February 2011 earthquakes in Christchurch.

Images, UC QuakeStudies

A photograph of Fred Mecoy, the Wellington City Council's Emergency Preparedness Manager, speaking at a graduation ceremony for more than 40 new civil defence volunteers in the Wellington Town Hall. Members of the Wellington Emergency Management Office team were presented certificates of appreciation during this event. The certificates were presented to the members to honour their involvement in the emergency response to the 22 February 2011 earthquakes in Christchurch.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office at a graduation ceremony in the Wellington Town Hall. The volunteers were awarded certificates of appreciation at the ceremony, for their work in the emergency response to the 22 February 2011 earthquake in Christchurch.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office at a graduation ceremony in the Wellington Town Hall. The volunteers were awarded certificates of appreciation at the ceremony, for their work in the emergency response to the 22 February 2011 earthquake in Christchurch.

Images, UC QuakeStudies

A poster created by Empowered Christchurch to advertise their submission to the CERA Draft Transition Recovery Plan on social media.The poster reads, "Submission. CERA Draft Transition Recovery Plan. 5. In your opinion, is there a better way to report on these recovery issues? We believe that, as regards residential recovery, monitoring should extend to code compliance certificates. According to figures published in 2014, only factions of repairs/rebuilds are completed with the issue of a code compliance certificate. To conclude the work to the required standard, someone must pay for the code compliance. Leaving things as they are could have serious negative consequences for the recovery and for the city as a whole. We suggest an investigation of number of outstanding code compliance certificates and that responsible parties are made to address this outstanding work. We need a city that is driven by the people that live in it, and enabled by a bureaucracy that accepts and mitigates risks, rather than transferring them to the most vulnerable residents."

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Invercargill Fire Station fire fighters who recently went to help in Christchurch for the Canterbury Earthquake cleanup. The National Boss presented the fire fighters with a Certificate of Commendation on Tuesday night. Invercargill firefighters Cameron McLachlan, Pete Scarlet, Dennis Hika, Chris Hamilton, Aaron Ramsay, National Commander Mike Hall, John Gilder, Ron Fetolofai (absent Murray Milne-Maresca) presented a certificate of commendation for their service during the Christchurch earthquake by national commander Mike Hall yesterday".

Research papers, University of Canterbury Library

During 2010 and 2011, major earthquakes caused widespread damage and the deaths of 185 people in the city of Christchurch. Damaged school buildings resulted in state intervention which required amendment of the Education Act of 1989, and the development of ‘site sharing agreements’ in undamaged schools to cater for the needs of students whose schools had closed. An effective plan was also developed for student assessment through establishing an earthquake impaired derived grade process. Previous research into traditional explanations of educational inequalities in the United Kingdom, the United States of America, and New Zealand were reviewed through various processes within three educational inputs: the student, the school and the state. Research into the impacts of urban natural disasters on education and education inequalities found literature on post disaster education systems but nothing could be found that included performance data. The impacts of the Canterbury earthquakes on educational inequalities and achievement were analysed over 2009-2012. The baseline year was 2009, the year before the first earthquake, while 2012 is seen as the recovery year as no schools closed due to seismic events and there was no state intervention into the education of the region. National Certificate of Educational Achievement (NCEA) results levels 1-3 from thirty-four secondary schools in the greater Christchurch region were graphed and analysed. Regression analysis indicates; in 2009, educational inequalities existed with a strong positive relationship between a school’s decile rating and NCEA achievement. When schools were grouped into decile rankings (1-10) and their 2010 NCEA levels 1-3 results were compared with the previous year, the percentage of change indicates an overall lower NCEA achievement in 2010 across all deciles, but particularly in lower decile schools. By contrast, when 2011 NCEA results were compared with those of 2009, as a percentage of change, lower decile schools fared better. Non site sharing schools also achieved higher results than site sharing schools. State interventions, had however contributed towards student’s achieving national examinations and entry to university in 2011. When NCEA results for 2012 were compared to 2009 educational inequalities still exist, however in 2012 the positive relationship between decile rating and achievement is marginally weaker than in 2009. Human ethics approval was required to survey one Christchurch secondary school community of students (aged between 12 and 18), teachers and staff, parents and caregivers during October 2011. Participation was voluntary and without incentives, 154 completed questionnaires were received. The Canterbury earthquakes and aftershocks changed the lives of the research participants. This school community was displaced to another school due to the Christchurch earthquake on 22 February 2011. Research results are grouped under four geographical perspectives; spatial impacts, socio-economic impacts, displacement, and health and wellbeing. Further research possibilities include researching the lag effects from the Canterbury earthquakes on school age children.

Images, Alexander Turnbull Library

Text reads 'Pet of the day... ' Below is a notice tacked to a wall which has an image of a cat wearing spectacles on it. Text reads 'LOST. Large moggy, last seen roaming in Christchurch. Answers to the name of "Gerry" or "Dinners ready". Has a loud purr, looks cuddly but can turn...' Context: This is a reference to Gerry Brownlee, the Minister for Earthquake Recovery. When National announced its offer based on the 2007 rating valuation to red-zone property owners on 23 June, Gerry Brownlee specifically told people who had made improvements between the time of the valuation and the September quake to 'keep their receipts'. The offer from CERA dated August 19 now says quite clearly that people can only seek an adjustment to the purchase price if the rating valuation is based on an incorrect floor area, or if 'you have received a code compliance certificate for consented building work undertaken after the rating valuation and that work increased the floor area of your house'. (Voxy - 23 August 2011) Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

Over 900 buildings in the Christchurch central business district and 10,000 residential homes were demolished following the 22nd of February 2011 Canterbury earthquake, significantly disrupting the rebuild progress. This study looks to quantify the time required for demolitions during this event which will be useful for future earthquake recovery planning. This was done using the Canterbury Earthquake Recovery Authority (CERA) demolition database, which allowed an in-depth look into the duration of each phase of the demolition process. The effect of building location, building height, and the stakeholder which initiated the demolition process (i.e. building owner or CERA) was investigated. The demolition process comprises of five phases; (i) decision making, (ii) procurement and planning, (iii) demolition, (iv) site clean-up, and (v) completion certification. It was found that the time required to decide to demolish the building made up majority of the total demolition duration. Demolition projects initiated by CERA had longer procurement and planning durations, but was quicker in other phases. Demolished buildings in the suburbs had a longer decision making duration, but had little effect on other phases of the demolition process. The decision making and procurement and planning phases of the demolition process were shorter for taller buildings, though the other phases took longer. Fragility functions for the duration of each phase in the demolition process are provided for the various categories of buildings for use in future studies.

Articles, UC QuakeStudies

A PDF copy of signage for the Places of Tranquillity initiative. Healthy Christchurch lead the collaborative project to create six gardens of beauty and peace to fill in some of the grey demolition sites across Christchurch. The signage promotes the initiative and invites people to register to create tranquil gardens at healthychristchurch.org.nz. From healthychristchurch.org.nz: "Healthy Christchurch is leading this innovative collaboration creating six gardens of beauty and peace to fill in some of the grey demolition sites across Christchurch.These gardens are for peace and tranquillity as well as family and community use with spaces designed for both." "This is a Healthy Christchurch collaboration in partnership with the city's ethnic communities to include their traditions, cultures and spiritual beliefs. This ensures that these communities' voices and presence is more visible in the rebuild of our city. There are three key partners in this collaborative project. Greening the Rubble are providing expertise in temporary site development and project managing the creation. Lincoln University School of Landscape Architecture provided the student competition and are supporting the winning students and their designs into fruition. Community and Public Health (CDHB) provide the overall project management, networks and promotion." "In 2012 Lincoln University School of Landscape Architecture students created 40 beautiful designs for the Places of Tranquillity. Six winning designs were chosen from the 995 votes made online or at the displays at Community and Public Health and the Migrant Centre. The six winners were announced at the Healthy Christchurch Hui on the 31st May 2012. Each winning student received a Certificate and a $50 Scorpio Book Voucher. The awards were presented by Michelle Mitchell, General Manager of the CERA Wellbeing Team."

Research papers, University of Canterbury Library

Observations made in past earthquakes, in New Zealand and around the world, have highlighted the vulnerability of non-structural elements such as facades, ceilings, partitions and services. Damage to these elements can be life-threatening or jeopardise egress routes but typically, the main concern is the cost and time associated with repair works. The Insurance Council of New Zealand highlighted the substantial economic losses in recent earthquakes due to poor performance of non-structural elements. Previous inspections and research have attributed the damage to non-structural elements principally to poor coordination, inadequate or lack of seismic restraints and insufficient clearances to cater for seismic actions. Secondary issues of design responsibility, procurement and the need for better alignment of the various Standards have been identified. In addition to the compliance issues, researchers have also demonstrated that current code provisions for non-structural elements, both in New Zealand and abroad, may be inadequate. This paper first reviews the damage observed against the requirements of relevant Standards and the New Zealand Building Code, and it appears that, had the installations been compliant, the cost of repair and business interruption would have been substantially less. The second part of the paper highlights some of the apparent shortcomings with the current design process for non-structural elements, points towards possible alternative strategies and identifies areas where more research is deemed necessary. The challenge of improving the seismic performance of non-structural elements is a complex one across a diverse construction industry. Indications are that the New Zealand construction industry needs to completely rethink the delivery approach to ensure an integrated design, construction and certification process. The industry, QuakeCentre, QuakeCoRE and the University of Canterbury are presently working together to progress solutions. Indications are that if new processes can be initiated, better performance during earthquakes will be achieved while delivering enhanced building and business resilience.

Research papers, The University of Auckland Library

The recent instances of seismic activity in Canterbury (2010/11) and Kaikōura (2016) in New Zealand have exposed an unexpected level of damage to non-structural components, such as buried pipelines and building envelope systems. The cost of broken buried infrastructure, such as pipeline systems, to the Christchurch Council was excessive, as was the cost of repairing building envelopes to building owners in both Christchurch and Wellington (due to the Kaikōura earthquake), which indicates there are problems with compliance pathways for both of these systems. Councils rely on product testing and robust engineering design practices to provide compliance certification on the suitability of product systems, while asset and building owners rely on the compliance as proof of an acceptable design. In addition, forensic engineers and lifeline analysts rely on the same product testing and design techniques to analyse earthquake-related failures or predict future outcomes pre-earthquake, respectively. The aim of this research was to record the actual field-observed damage from the Canterbury and Kaikōura earthquakes of seismic damage to buried pipeline and building envelope systems, develop suitable testing protocols to be able to test the systems’ seismic resilience, and produce prediction design tools that deliver results that reflect the collected field observations with better accuracy than the present tools used by forensic engineers and lifeline analysts. The main research chapters of this thesis comprise of four publications that describe the gathering of seismic damage to pipes (Publication 1 of 4) and building envelopes (Publication 2 of 4). Experimental testing and the development of prediction design tools for both systems are described in Publications 3 and 4. The field observation (discussed in Publication 1 of 4) revealed that segmented pipe joints, such as those used in thick-walled PVC pipes, were particularly unsatisfactory with respect to the joint’s seismic resilience capabilities. Once the joint was damaged, silt and other deleterious material were able to penetrate the pipeline, causing blockages and the shutdown of key infrastructure services. At present, the governing Standards for PVC pipes are AS/NZS 1477 (pressure systems) and AS/NZS 1260 (gravity systems), which do not include a protocol for evaluating the PVC pipes for joint seismic resilience. Testing methodologies were designed to test a PVC pipe joint under various different simultaneously applied axial and transverse loads (discussed in Publication 3 of 4). The goal of the laboratory experiment was to establish an easy to apply testing protocol that could fill the void in the mentioned standards and produce boundary data that could be used to develop a design tool that could predict the observed failures given site-specific conditions surrounding the pipe. A tremendous amount of building envelope glazing system damage was recorded in the CBDs of both Christchurch and Wellington, which included gasket dislodgement, cracked glazing, and dislodged glazing. The observational research (Publication 2 of 4) concluded that the glazing systems were a good indication of building envelope damage as the glazing had consistent breaking characteristics, like a ballistic fuse used in forensic blast analysis. The compliance testing protocol recognised in the New Zealand Building Code, Verification Method E2/VM1, relies on the testing method from the Standard AS/NZS 4284 and stipulates the inclusion of typical penetrations, such as glazing systems, to be included in the test specimen. Some of the building envelope systems that failed in the recent New Zealand earthquakes were assessed with glazing systems using either the AS/NZS 4284 or E2/VM1 methods and still failed unexpectedly, which suggests that improvements to the testing protocols are required. An experiment was designed to mimic the observed earthquake damage using bi-directional loading (discussed in Publication 4 of 4) and to identify improvements to the current testing protocol. In a similar way to pipes, the observational and test data was then used to develop a design prediction tool. For both pipes (Publication 3 of 4) and glazing systems (Publication 4 of 4), experimentation suggests that modifying the existing testing Standards would yield more realistic earthquake damage results. The research indicates that including a specific joint testing regime for pipes and positioning the glazing system in a specific location in the specimen would improve the relevant Standards with respect to seismic resilience of these systems. Improving seismic resilience in pipe joints and glazing systems would improve existing Council compliance pathways, which would potentially reduce the liability of damage claims against the government after an earthquake event. The developed design prediction tool, for both pipe and glazing systems, uses local data specific to the system being scrutinised, such as local geology, dimensional characteristics of the system, actual or predicted peak ground accelerations (both vertically and horizontally) and results of product-specific bi-directional testing. The design prediction tools would improve the accuracy of existing techniques used by forensic engineers examining the cause of failure after an earthquake and for lifeline analysts examining predictive earthquake damage scenarios.