The Canterbury earthquakes destroyed the Christchurch CBD and caused massive disruption to business across the region. There was an urgent need to support business survival and foster economic recovery. Recover Canterbury is a hub providing seamless support for businesses affected by the earthquakes, giving them easy access to government and commercial expertise in a one-stop shop.
A photograph of the north side of the ChristChurch Cathedral in Cathedral Square. The front of the building has been propped up with steel bracing but further earthquakes have caused more damage, leaving a gap between the bracing and the wall. The tower has been partially demolished, but the lower section is still visible. Wire fencing has been placed around the entire building. In the background, a crane is rising high above the square.
A photograph of the north side of the ChristChurch Cathedral in Cathedral Square. The front of the building has been propped up with steel bracing but further earthquakes have caused more damage, leaving a gap between the bracing and the wall. The tower has been partially demolished, but the lower section is still visible. Wire fencing has been placed around the entire building. In the background, a crane is rising high above the square.
A photograph of the north side of the ChristChurch Cathedral in Cathedral Square. The front of the building has been propped up with steel bracing but further earthquakes have caused more damage, leaving a gap between the bracing and the wall. The tower has been partially demolished, but the lower section is still visible. Wire fencing has been placed around the entire building. In the background, a crane is rising high above the square.
Disasters are a critical topic for practitioners of landscape architecture. A
fundamental role of the profession is disaster prevention or mitigation
through practitioners having a thorough understanding of known threats. Once we reach the ‘other side’ of a disaster – the aftermath – landscape architecture plays a central response in dealing with its consequences, rebuilding of settlements and infrastructure and gaining an enhanced understanding of the causes of any failures. Landscape architecture must respond not only to the physical dimensions of disaster landscapes but also to the social, psychological and spiritual aspects. Landscape’s experiential potency is heightened in disasters in ways that may challenge and extend the spectrum of emotions. Identity is rooted in landscape, and massive transformation through the impact of a disaster can lead to ongoing psychological devastation. Memory and landscape are tightly
intertwined as part of individual and collective identities, as connections to place and time. The ruptures caused by disasters present a challenge to remembering the lives lost and the prior condition of the landscape, the intimate attachments to places now gone and even the event itself.
The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, the damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described. A detailed technical description of the most prevalently observed failure mechanisms is provided, with reference to recognised failure modes for unreinforced masonry structures. The observed performance of existing seismic retrofit interventions is also provided, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the vulnerability of similar strengthening techniques when applied to unreinforced stone masonry structures.
During the Christchurch earthquake of February 2011, several midrise buildings of Reinforced Concrete Masonry (RCM) construction achieved performance levels in the range of life safety to near collapse levels. These buildings were subjected to seismic demands higher than the building code requirements of the time and higher than the current New Zealand Loadings Standard (NZS-1170.5:2004). Structural damage to these buildings has been documented and is currently being studied to establish lessons to be learned from their performance and how to incorporate these lessons into future RCM design and construction practices. This paper presents a case study of a six story RCM building deemed to have reached the near collapse performance level. The RCM walls on the 2nd floor failed due to toe crushing reducing the building’s lateral resistance in the east-west direction. A nonlinear dynamic analysis on a 3D model was conducted to simulate the development of the governing failure mechanism. Preliminary analysis results show that the damaged walls were initially under large compression forces from gravity loads which caused increase in their lateral strength and reduced their ductility. After toe crushing failure developed, axial instability of the model was prevented by a redistribution of gravity loads.