Search

found 2 results

Research papers, The University of Auckland Library

High demolition rates were observed in New Zealand after the 2010-2011 Canterbury Earthquake Sequence despite the success of modern seismic design standards to achieve required performance objectives such as life safety and collapse prevention. Approximately 60% of the multi-storey reinforced concrete (RC) buildings in the Christchurch Central Business District were demolished after these earthquakes, even when only minor structural damage was present. Several factors influenced the decision of demolition instead of repair, one of them being the uncertainty of the seismic capacity of a damaged structure. To provide more insight into this topic, the investigation conducted in this thesis evaluated the residual capacity of moderately damaged RC walls and the effectiveness of repair techniques to restore the seismic performance of heavily damaged RC walls. The research outcome provided insights for developing guidelines for post-earthquake assessment of earthquake-damaged RC structures. The methodology used to conduct the investigation was through an experimental program divided into two phases. During the first phase, two walls were subjected to different types of pre-cyclic loading to represent the damaged condition from a prior earthquake, and a third wall represented a repair scenario with the damaged wall being repaired using epoxy injection and repair mortar after the pre-cyclic loading. Comparisons of these test walls to a control undamaged wall identified significant reductions in the stiffness of the damaged walls and a partial recovery in the wall stiffness achieved following epoxy injection. Visual damage that included distributed horizontal and diagonal cracks and spalling of the cover concrete did not affect the residual strength or displacement capacity of the walls. However, evidence of buckling of the longitudinal reinforcement during the pre-cyclic loading resulted in a slight reduction in strength recovery and a significant reduction in the displacement capacity of the damaged walls. Additional experimental programs from the literature were used to provide recommendations for modelling the response of moderately damaged RC walls and to identify a threshold that represented a potential reduction in the residual strength and displacement capacity of damaged RC walls in future earthquakes. The second phase of the experimental program conducted in this thesis addressed the replacement of concrete and reinforcing steel as repair techniques for heavily damaged RC walls. Two walls were repaired by replacing the damaged concrete and using welded connections to connect new reinforcing bars with existing bars. Different locations of the welded connections were investigated in the repaired walls to study the impact of these discontinuities at the critical section. No significant changes were observed in the stiffness, strength, and displacement capacity of the repaired walls compared to the benchmark undamaged wall. Differences in the local behaviour at the critical section were observed in one of the walls but did not impact the global response. The results of these two repaired walls were combined with other experimental programs found in the literature to assemble a database of repaired RC walls. Qualitative and quantitative analyses identified trends across various parameters, including wall types, damage before repair, and repair techniques implemented. The primary outcome of the database analysis was recommendations for concrete and reinforcing steel replacement to restore the strength and displacement capacity of heavily damaged RC walls.

Research papers, University of Canterbury Library

The lateral capacity of a conventional CLT shear wall is often governed by the strength and stiffness of its connections, which do not significantly utilize the in-plane strength of the CLT. Therefore, CLT shear walls are not yet being used efficiently in the construction of mass timber buildings due to a lack of research on high-capacity connections and alternative wall configurations. In this study, cyclic experiments were completed on six full-scale, 5-ply cantilever CLT shear walls with high-capacity hold-downs using mixed angle screws and bolts. All specimens exhibited significantly higher strength and stiffness than previously tested conventional CLT shear walls in the literature. The base connections demonstrated ductile failure modes through yielding of the hold-down connections. Based on the experimental results, numerical models were calibrated to investigate the seismic behaviour of CLT shear walls for prototype buildings of 3 and 6-storeys in Christchurch, NZ. As an alternative to cantilever (single) shear walls, a type of coupled wall with steel link beams between adjacent CLT wall piers was investigated. Effective coupling requires the link beam-to-wall connections to have adequate strength to ensure ductile link beam responses and adequate stiffness to yield the link beams at a relatively low inter-storey drift level. To this end, three beam-to-wall connection types were developed and cyclically tested to investigate their behaviour and feasibility. Based on the test results of the critical connection, a 3-storey, 2/3-scale coupled CLT wall specimen with three steel link beams and mixed angle screwed hold-downs was cyclically tested to evaluate its performance and experimentally validate the system concept. The test results showed a relatively high lateral strength compared to conventional CLT shear walls, as well as a high system ductility ratio of 7.6. Failure of the system was characterised by combined bending and withdrawal of the screws in the mixed angle screw hold-downs, yielding and eventual inelastic buckling of the steel link beams, CLT toe crushing, and local CLT delamination. Following the initial test, the steel link beams, mixed angle screw hold-downs, and damaged CLT regions were repaired, then the wall specimen was re-tested. The repaired wall behaved similarly to the original test and exhibited slightly higher energy dissipation and peak strength, but marginally more rapid strength deterioration under cyclic loading. Several hybrid coupled CLT shear walls were numerically modelled and calibrated based on the results of the coupled wall experiments. Pushover analyses were conducted on a series of configurations to validate a capacity design method for the system and to investigate reasonable parameter values for use in the preliminary design of the system. Additionally, an iterative seismic design method was proposed and used to design sample buildings of 6, 8, and 10-storeys using both nonlinear pushover and nonlinear time history analyses to verify the prototype designs. Results of the sample building analyses demonstrated adequate seismic behaviour and the proposed design parameters were found to be appropriate. In summary, high-capacity CLT shear walls can be used for the resistance of earthquakes by using stronger base connections and coupled wall configurations. The large-scale experimental testing in this study has demonstrated that both cantilever and coupled CLT shear walls are feasible LLRSs which can provide significantly greater lateral strength, stiffness, and energy dissipation than conventional CLT shear wall configurations.