Search

found 15 results

Images, UC QuakeStudies

Damage to Medway Street in Richmond. The road surface is cracked and buckled, and covered in liquefaction silt. A temporary road sign restricting speed to 30 is visible, with road cones behind. The photographer comments, "Medway St, Woodchester Ave on right just beyond the 30 sign".

Images, UC QuakeStudies

A man signals directions to a car attempting to make a u-turn on the badly damaged River Road. The road surface is cracked and buckled. The photographer comments, "More stranded cars, and rubbernecking sightseers turning around to go back the way they came".

Images, UC QuakeStudies

Damage to Medway Street in Richmond. The road surface is cracked and buckled, and covered in liquefaction silt. A temporary road sign restricting speed to 30 is visible, with road cones behind. The photographer comments, "Medway St, between Woodchester Ave and River Rd. Woodchester Ave on right just beyond the 30 sign".

Images, UC QuakeStudies

A large crack in the road surface at the intersection of Medway Street and River Road, where River Road has slumped towards the river. The photographer comments, "Medway Street is a buckled mess of broken seal and liquefaction. 79 Medway St is on the right - taken at the corner of Medway St and River Rd".

Images, UC QuakeStudies

Damage to River Road in Richmond. The road is badly cracked and buckled, and is partly blocked off with road cones and warning tape. In the background is a truck carrying more road cones and signs. The photographer comments, "Major slumps and cracks along River Rd. Near 381 River Rd, looking towards the Banks Ave - Dallington Terrace corner".

Images, UC QuakeStudies

Damage to a residential property in Richmond. The brick wall of the garage has collapse inward, and the roof fallen in on top of it. The driveway is badly cracked and buckled. The photographer comments, "These photos show our old house in River Rd. The brick garage just collapsed, pulling the gate over as it fell".

Images, UC QuakeStudies

A damaged driveway bridge over Dudley Creek has been blocked off with warning tape. The sides of the bridge have slumped, and the driveway surface has buckled and cracked. In the background, the gates to the property are misaligned. The photographer comments, "The bridge to a large mansion on a huge section was displaced by half a metre".

Images, UC QuakeStudies

A damaged driveway bridge over Dudley Creek has been blocked off with warning tape. The sides of the bridge have slumped, and the driveway surface has buckled and cracked. In the background, the gates to the property are misaligned. The photographer comments, "The bridge into the mansion in Banks Avenue is as broken as the mansion itself".

Images, UC QuakeStudies

A damaged driveway bridge over Dudley Creek has been blocked off with warning tape. The sides of the bridge have slumped, and the driveway surface has buckled and cracked. In the background, the gates to the property are misaligned. The photographer comments, "The bridge to a large mansion on a huge section was displaced by half a metre".

Research papers, The University of Auckland Library

High demolition rates were observed in New Zealand after the 2010-2011 Canterbury Earthquake Sequence despite the success of modern seismic design standards to achieve required performance objectives such as life safety and collapse prevention. Approximately 60% of the multi-storey reinforced concrete (RC) buildings in the Christchurch Central Business District were demolished after these earthquakes, even when only minor structural damage was present. Several factors influenced the decision of demolition instead of repair, one of them being the uncertainty of the seismic capacity of a damaged structure. To provide more insight into this topic, the investigation conducted in this thesis evaluated the residual capacity of moderately damaged RC walls and the effectiveness of repair techniques to restore the seismic performance of heavily damaged RC walls. The research outcome provided insights for developing guidelines for post-earthquake assessment of earthquake-damaged RC structures. The methodology used to conduct the investigation was through an experimental program divided into two phases. During the first phase, two walls were subjected to different types of pre-cyclic loading to represent the damaged condition from a prior earthquake, and a third wall represented a repair scenario with the damaged wall being repaired using epoxy injection and repair mortar after the pre-cyclic loading. Comparisons of these test walls to a control undamaged wall identified significant reductions in the stiffness of the damaged walls and a partial recovery in the wall stiffness achieved following epoxy injection. Visual damage that included distributed horizontal and diagonal cracks and spalling of the cover concrete did not affect the residual strength or displacement capacity of the walls. However, evidence of buckling of the longitudinal reinforcement during the pre-cyclic loading resulted in a slight reduction in strength recovery and a significant reduction in the displacement capacity of the damaged walls. Additional experimental programs from the literature were used to provide recommendations for modelling the response of moderately damaged RC walls and to identify a threshold that represented a potential reduction in the residual strength and displacement capacity of damaged RC walls in future earthquakes. The second phase of the experimental program conducted in this thesis addressed the replacement of concrete and reinforcing steel as repair techniques for heavily damaged RC walls. Two walls were repaired by replacing the damaged concrete and using welded connections to connect new reinforcing bars with existing bars. Different locations of the welded connections were investigated in the repaired walls to study the impact of these discontinuities at the critical section. No significant changes were observed in the stiffness, strength, and displacement capacity of the repaired walls compared to the benchmark undamaged wall. Differences in the local behaviour at the critical section were observed in one of the walls but did not impact the global response. The results of these two repaired walls were combined with other experimental programs found in the literature to assemble a database of repaired RC walls. Qualitative and quantitative analyses identified trends across various parameters, including wall types, damage before repair, and repair techniques implemented. The primary outcome of the database analysis was recommendations for concrete and reinforcing steel replacement to restore the strength and displacement capacity of heavily damaged RC walls.