A photograph of an installation of empty picture frames on the brick wall of a building on Madras Street.
A photograph of an installation of empty picture frames on the brick wall of a building on Madras Street.
A photograph of an installation of empty picture frames on the brick wall of a building on Madras Street.
A photograph of an installation of empty picture frames on the brick wall of a building on Madras Street.
A photograph of an installation of empty picture frames on the brick wall of a building on Madras Street.
A photograph of a cleared building site between High Street and Lichfield Street. Graffiti can be seen on the brick wall.
A photograph of a cleared building site between High Street and Lichfield Street. Graffiti can be seen on the brick wall at the back of the site.
A photograph of the house at 410 Oxford Terrace. Sections of the brick fence at the front have been removed. Some of the bricks are stacked on the remaining wall, or have fallen on the footpath in front.
A damaged brick wall around a courtyard garden on Ash Street, seen from Madras Street.
A photograph of damaged buildings and empty site on the corner of Lichfield Street and Madras Street. A mural commissioned by Gap Filler titled 'Knit Happens' has been painted on the brick wall in the corner of the remaining buildings.
A photograph of damaged buildings near the corner of Lichfield Street and Madras Street. A mural commissioned by Gap Filler titled 'Knit Happens' has been painted on the brick wall in the corner of the remaining buildings.
A photograph of street art on a brick wall on Colombo Street. Two artists can be seen working on scaffolding on the right.
Seen through a cordon fence, traces of bricks from a demolished building adhere to the concrete wall of the adjoining building, also being demolished.
Seen through a cordon fence, traces of bricks from a demolished building adhere to the concrete wall of the adjoining building, also being demolished.
A damaged brick wall around a courtyard garden on Ash Street, seen from Madras Street. The Alice in Videoland building can be seen in the background.
A photograph of a painting on the wall of a brick building. The artwork depicts a group of people sitting around a birthday cake.
A photograph of a painting on the wall of a brick building. The artwork depicts a group of people sitting around a birthday cake.
The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragms. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal mesh sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a snapshot of the performed experimental program and the test results and a preliminary proposed pull-out capacity of adhesive anchors are presented herein.
The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal mesh sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a snapshot of the performed experimental program and the test results and a preliminary proposed pull-out capacity of adhesive anchors are presented herein. http://www.confer.co.nz/nzsee/ VoR - Version of Record
The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for the case of adhesive anchor connections than for the case of through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal foil sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes and a snapshot of the performed experimental program and the test results are presented herein. http://hdl.handle.net/2292/21050
A photograph of an empty building site on the corner of Lichfield Street and Madras Street. A mural commissioned by Gap Filler titled 'Knit Happens' has been painted on the brick wall in the corner of the remaining buildings.
An abandoned residential property at 4 Waireka Lane in Bexley. The driveway is covered with weeds and silt from liquefaction. One of the garage doors is twisted and the other has 'HM' spray-painted on it. The number four has been spray-painted on the brick wall under the window.
It is well known that buildings constructed using unreinforced masonry (URM) are susceptible to damage from earthquake induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent New Zealand example of destructive earthquakes, which have drawn people's attention to the inherent seismic weaknesses of URM buildings and anchored masonry veneer systems in New Zealand. A brief review of the data collected following the 2010 Darfield earthquake and more comprehensive documentation of data that was collected following the 2011 Christchurch earthquake is presented, along with the findings from subsequent data interrogation. Large stocks of earthquake prone vintage URM buildings that remain in New Zealand and in other seismically active parts of the world result in the need for minimally invasive and cost effective seismic retrofit techniques. The principal objective of the doctoral research reported herein was to investigate the applicability of near surface mounted (NSM) carbon fibre reinforced polymer (CFRP) strips as a seismic improvement technique. A comprehensive experimental program consisting of 53 pull tests is presented and is used to assess the accuracy of existing FRP-to-masonry bond models, with a modified model being proposed. The strength characteristics of vintage clay brick URM wall panels from two existing URM buildings was established and used as a benchmark when manufacturing replica clay brick test assemblages. The applicability of using NSM CFRP strips as a retrofitting technique for improving the shear strength and the ductility capacity of multi-leaf URM walls constructed using solid clay brick masonry is investigated by varying CFRP reinforcement ratios. Lastly, an experimental program was undertaken to validate the proposed design methodology for improving the strength capacity of URM walls. The program involved testing full-scale walls in a laboratory setting and testing full-scale walls in-situ in existing vintage URM buildings. Experimental test results illustrated that the NSM CFRP technique is an effective method to seismically strengthen URM buildings.
A photograph taken near the intersection of Manchester Street, Lichfield Street and High Street. A mural has been painted on a brick wall. Behind this is the old Post Office building (now C1 Espresso). There is a sculpture by Ronnie Van Hout on the roof.
A photograph taken near the intersection of Manchester Street, Lichfield Street and High Street. A mural has been painted on a brick wall. Behind this, the old Post Office building which now houses C1 Espresso can be seen with Ronnie Van Hout's sculpture on the roof.