Central City Rebuild Communication Structure
Articles, UC QuakeStudies
A diagram created in 2011, showing the communication structure across rebuild agencies.
A diagram created in 2011, showing the communication structure across rebuild agencies.
An outline, created in 2011, of the levels of service and condition of the horizontal infrastructure within the central city, providing a broad indication of damage, service levels provided to residents and business owners, and used to estimate the cost of repairs following the earthquake events.
A document created in 2011, demonstrating the design parameters for the rebuild of wastewater, storm water, water supply and roading in the central city.
A document outlining the methodology for rebuilding horizontal infrastructure in the central city, covering wastewater (local reticulation and trunk), wastewater pump stations, storm water (local reticulation and trunk), potable water, roads, and bridges.
A document outlining how the rebuild of wastewater, water supply, storm water and roading infrastructure was to be managed and coordinated with other programmes of work in the central city.
A copy of the plan, developed in 2011, outlining the communication and community engagement that supported SCIRT's central city programme and kept Christchurch residents informed about this work.
A PDF copy of a spreadsheet used to identify the impacts of traffic management in the central city.
A detailed presentation created in 2011, outlining the approach to the central city rebuild and associated risk management.
A shortened version of a presentation created in 2011, outlining the approach to the central city rebuild.
A diagram illustrating how the rebuild of the three waters and roading infrastructure was to be managed and coordinated with other programmes of work in the central city.
A copy of the plan developed in 2011 to facilitate a collaborative approach between all stakeholders and minimise the impact on the traffic network, because of the extensive repair works necessary to repair vertical and horizontal infrastructure.
A copy of the plan, created in 2011, detailing how the rebuild of the three waters and road infrastructure was to be coordinated with other utility operators.
This paper analyses the city of Christchurch, New Zealand, which has been through dramatic changes since it was struck by a series of earthquakes of different intensities between 2010 and 2011. The objective is to develop a deeper understanding of resilience by looking at changes in green and grey infrastructures. The study can be helpful to reveal a way of doing comparative analysis using resilience as a theoretical framework. In this way, it might be possible to assess the blueprint of future master plans by considering how important the interplay between green and grey infrastructure is for the resilience capacity of cities.
The increase in urban population has required cities to rethink their strategies for minimising greenhouse gas impacts and adapting to climate change. While urban design and planning policy have been guided by principles such as walkability (to reduce the dependence on cars) and green infrastructure (to enhance the quality of open spaces to support conservation and human values), there have been conflicting views on what spatial strategies will best prepare cities for a challenging future. Researchers supporting compact cities based upon public Transit Oriented Development have claimed that walkability, higher density and mixed-uses make cities more sustainable (Owen, 2009) and that, while green spaces in cities are necessary, they are dull in comparison with shopfronts and street vendors (Speck, 2012, p 250). Other researchers claim that green infrastructure is fundamental to improving urban sustainability and attracting public space users with improved urban comfort, consequently encouraging walkability (Pitman and Ely, 2013). Landscape architects tend to assume that ‘the greener the better’; however, the efficiency of urban greenery in relation to urban comfort and urbanity depends on its density, distribution and the services provided. Green infrastructure can take many forms (from urban forests to street trees) and provide varied services (amended microclimate, aesthetics, ecology and so forth). In this paper, we evaluate the relevance of current policy in Christchurch regarding both best practice in green infrastructure and urban comfort (Tavares, 2015). We focus on the Christchurch Blueprint for rebuilding the central city, and critically examine the post-earthquake paths the city is following regarding its green and grey infrastructures and the resulting urban environment. We discuss the performance and appropriateness of the current Blueprint in post-earthquake Christchurch, particularly as it relates to the challenges that climate change is creating for cities worldwide.