Search

found 8 results

Images, UC QuakeStudies

Close up of an oven element which has blown and partly melted. The photographer comments, "After the Christchurch earthquake on the 22 February we had no power for about 4 days. We finally got electricity again from the electricity companies' mobile generator the size of a big van. We turned on the oven and there was a loud vibrating hum and this was the result".

Images, UC QuakeStudies

A fallen branch caught in weeds in the River Styx. The photographer comments, "This branch was broken off during one of the recent Christchurch earthquakes and fell into the River Styx. Now one side has sprouted roots and the other new buds".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Mayor Rick Cooper has started a collection to benefit the victims of the Christchurch earthquake. Pictured is Councillor Doreen Blyth, Chair of Emergency Management. Mayor Cooper said he was already blown away at the generosity of Taupo people".

Audio, Radio New Zealand

Its budget may have blown out by almost a third more than the original figure, but this weekend the doors to the Christchurch Town Hall will re-open for the first time since the 2011 earthquakes. It was touch and go whether the 47 year-old building would even be repaired after the 6.2 quake eight years ago today. 167-million-dollars later and the city is finally getting its town hall back. Conan Young was allowed inside for a sneak peak ahead of Saturday's official opening.

Audio, Radio New Zealand

Christchurch has a big bill to contend with, if it still wants the multi-use stadium that's been in the works since the earthquakes 11 years ago. The problem-plagued project has blown out another $150 million, meaning it's going to cost $680 million and counting. The finish date's been pushed out too - to April 2026. Christchurch City Council's punting the hefty decision making back to the ratepayers. The options - increase the budget, scale back the project, or halt work altogether. Tessa Guest reports, and Crusaders CEO Colin Mansbridge talks to Lisa Owen.

Audio, Radio New Zealand

A school leader says the Ministry of Education of wasted millions of taxpayer dollars over years of earthquake repairs, and was obstructive and misleading. The building budget at Christchurch Girls High School has blown out by 50 percent to $40 million and it's not finished, even after five years of work. Mike Lay, who was chair of the board of trustees for most of those years, until 2018, says the ministry botched the job then targeted him when he tried to hold it accountable. He told Phil Pennington about the school's struggle to get the school re-built properly.

Research papers, University of Canterbury Library

The collapse of Redcliffs’ cliff in the 22 February 2011 and 13 June 2011 earthquakes were the first times ever a major failure incident occurred at Redcliffs in approximately 6000 years. This master’s thesis is a multidisciplinary engineering geological investigation sought to study these particular failure incidents, focusing on collecting the data necessary to explain the cause and effect of the cliff collapsing in the event of two major earthquakes. This study provides quantitative and qualitative data about the geotechnical attributes and engineering geological nature of the sea-cut cliff located at Redcliffs. Results from surveying the geology of Redcliffs show that the exposed lithology of the cliff face is a variably jointed rock body of welded and (relatively intact) unwelded ignimbrite, a predominantly massive unit of brecciated tuff, and a covering of wind-blown loess and soil deposit (commonly found throughout Canterbury) on top of the cliff. Moreover, detailing the external component of the slope profile shows that Redcliffs’ cliff is a 40 – 80 m cliff with two intersecting (NE and SE facing) slope aspects. The (remotely) measured geometry of the cliff face comprises of multiple outstanding gradients, averaging a slope angle of ~67 degrees (post-13 June 2011), where the steepest components are ~80 degrees, whereas the gentle sloping sections are ~44 degrees. The physical structure of Redcliffs’ cliff drastically changed after each collapse, whereby seismically induced alterations to the slope geometry resulted in material deposited on the talus at the base of the cliff. Prior to the first collapse, the variance of the gradient down the slope was minimal, with the SE Face being the most variable with up to three major gradients on one cross section. However, after each major collapse, the variability increased with more parts of the cliff face having more than one major gradient that is steeper or gentler than the remainder of the slope. The estimated volume of material lost as a result of the gradient changes was 28,267 m³ in February and 11,360 m³ in June 2011. In addition, surveys of the cliff top after the failure incidents revealed the development of fissures along the cliff edge. Monitoring 10 fissures over three months indicated that fissured by the cliff edge respond to intense seismicity (generally ≥ Mw 4) by widening. Redcliffs’ cliff collapsed on two separate occasions as a result of an accumulated amount of damage of the rock masses in the cliff (caused by weathering and erosion over time), and two Mw 6.2 trigger earthquakes which shook the Redcliffs and the surrounding area at a Peak Ground Acceleration (PGA) estimated to be around 2 g. The results of the theoretical study suggests that PGA levels felt on-site during both instances of failure are the result of three major factors: source of the quake and the site affected; topographic amplification of the ground movement; the short distance between the source and the cliff for both fault ruptures; the focus of seismic energy in the direction of thrust faulting along a path that intercepts Redcliffs (and the Port Hills). Ultimately, failure on the NE and SE Faces of Redcliffs’ cliff was concluded to be global as every part of the exposed cliff face deposited a significant volume of material on the talus at the base of the cliff, with the exception of one section on the NE Face. The cliff collapses was a concurrent process that is a single (non-monotonic) event that operated as a complex series of (primarily) toppling rock falls, some sliding of blocks, and slumping of the soil mantle on top of the cliff. The first collapse had a mixture of equivalent continua slope movement of the heavily weathered / damaged surface of the cliff face, and discontinuous slope movement of the jointed inner slope (behind the heavily weathered surface); whereas the second collapse resulted in only discontinuous slope movement on account of the freshly exposed cliff face that had damage to the rock masses, in the form of old and (relatively) new discontinuous fractures, induced by earthquakes and aftershocks leading up to the point of failure.