A presentation to the IPWEA conference of a paper which shares the process followed for the assessment and prioritisation of the retaining walls within the Port Hills in Christchurch.
A paper which shares the process followed for the assessment and prioritisation of the retaining walls within the Port Hills in Christchurch.
A paper which outlines the observed damage to Christchurch City Council-owned retaining walls and the repair solutions developed.
A paper which outlines SCIRT's approach to asset assessment, design and repair of damaged retaining walls, and presents a case study of a retaining wall rebuild, on Cunningham Terrace, Lyttelton.
A pdf copy of a post from the One Voice Te Reo Kotahi blog. The post is titled, "KeepOur Assets (KOA)".
Improving community resilience requires a way of thinking about the nature of a community. Two complementary aspects are proposed: the flows connecting the community with its surrounding environment and the resources the community needs for its ongoing life. The body of necessary resources is complex, with many interactions between its elements. A systems approach is required to understand the issues adequately. Community resilience is discussed in general terms together with strategies for improving it. The ideas are then illustrated and amplified by an extended case study addressing means of improving the resilience of a community on the West Coast of New Zealand to natural disasters. The case study is in two phases. The first relies on a mix of on-the-ground observations and constructed scenarios to provide recommendations for enhancing community resilience, while the second complements the first by developing a set of general lessons and issues to be addressed from observations of the Christchurch earthquakes of 2010 and 2011.
The Sendai Framework for Disaster Risk Reduction 2015-2030 finds that, despite progress in disaster risk reduction over the last decade “evidence indicates that exposure of persons and assets in all countries has increased faster than vulnerability has decreased, thus generating new risk and a steady rise in disaster losses” (p.4, UNISDR 2015). Fostering cooperation among relevant stakeholders and policy makers to “facilitate a science-policy interface for effective decisionmaking in disaster risk management” is required to achieve two priority areas for action, understanding disaster risk and enhancing disaster preparedness (p. 13, p. 23, UNISDR 2015). In other topic areas, the term science-policy interface is used interchangeably with the term boundary organisation. Both terms are usually used refer to systematic collaborative arrangements used to manage the intersection, or boundary, between science and policy domains, with the aim of facilitating the joint construction of knowledge to inform decision-making. Informed by complexity theory, and a constructivist focus on the functions and processes that minimize inevitable tensions between domains, this conceptual framework has become well established in fields where large complex issues have significant economic and political consequences, including environmental management, biodiversity, sustainable development, climate change and public health. To date, however, there has been little application of this framework in the disaster risk reduction field. In this doctoral project the boundary management framework informs an analysis of the research response to the 2010-2011 Canterbury Earthquake Sequence, focusing on the coordination role of New Zealand’s national Natural Hazards Research Platform. The project has two aims. It uses this framework to tell the nuanced story of the way this research coordination role evolved in response to both the complexity of the unfolding post-disaster environment, and to national policy and research developments. Lessons are drawn from this analysis for those planning and implementing arrangements across the science-policy boundary to manage research support for disaster risk reduction decision-making, particularly after disasters. The second aim is to use this case study to test the utility of the boundary management framework in the disaster risk reduction context. This requires that terminology and concepts are explained and translated in terms that make this analysis as accessible as possible across the disciplines, domains and sectors involved in disaster risk reduction. Key findings are that the focus on balance, both within organisations, and between organisations and domains, and the emphasis on systemic effects, patterns and trends, offer an effective and productive alternative to the more traditional focus on individual or organisational performance. Lessons are drawn concerning the application of this framework when planning and implementing boundary organisations in the hazard and disaster risk management context.