Diverse Density proposes an alternative housing strategy to the idealistic top-down process of housing development. The term ‘Top – down’ refers to a situation in which decisions are made by a few people in authority rather than by the people who are affected by the decisions (Cambridge). Problems/Position/Question: New Zealand’s urban housing is in a period of flux. Pressures of densification have permitted the intervention of medium density housing development schemes but these are not always successful. These typically top-down processes often result in internally focused design schemes that do not adhere to their specific context. The subsequent design outcomes can cause detrimental impacts to the local, urban and architectural conditions. With vast quantities of council regulations, building restrictions and design guidelines clouding over the housing sector, commonly referred to as ‘red tape’, occupant participation in the housing development sector is dwindling. A boundless separation between top-down and traditional housing processes has occurred and our existing neighbourhoods and historic architectural character are taking on the brunt of the problem. The thought-provoking, alternative housings strategies of key research theorists Alejandro Aravena and John Habraken frame positions that challenge contemporary densification methods with an alternative strategy. This position is addressed by endeavoring to answer; How can demands for denser housing achieve dynamic design responses that adhere to changes in occupancy, function and local site conditions? Aim: The aim of this thesis is to challenge New Zealand’s current housing densification methods by proposing an alternative densification strategy. Explicit devotion will be attributed to opposing top-down building developments. Secondly, this thesis aims to test a speculative site-specific housing model. The implementation of a Christchurch housing scenario will situate an investigative study to test the strategy and its ability to stimulate greater diversity, site responsiveness, functional adaptability and occupancy permutation. The post-earthquake housing conditions of Christchurch provide an appropriate scenario to test and implement design-led investigations. Objectives: The primary objectives of this design-led research investigation it to challenge the idealistic top-down method of developing density with a new method to: - Develop contextual architectural cohesion - Encourage residential diversity - Reinvigorate architectural autonomy - Respond to, and recognise, existing site conditions - Develop a housing model that: - Adapts to occupant functionality preferences - Caters to occupancy diversity - Achieves contextual responsiveness The proposition is addressed through a speculative design-led scenario study. A well-established Christchurch urban environment is adopted to implement and critique the envisioned alternative strategy. Development of the designs responsiveness, adaptability, and functionality produce a prototype housing model that actively adheres to its particular context. Implication: The implications of this research would be an alternative densification strategy to perceive the advancement of punctual assessment of building compliance. With accelerated building processes, the research may have implications for addressing New Zealand’s housing crisis whilst simultaneously providing diverse, personable and responsive architectural solutions. A more dynamic, up-to-date and responsive housing development sector would be informed.
Purpose - The purpose of this paper is to identify through the application of Actor Network Theory (ANT) the issues and impediments to the implementation of mandatory seismic retrofitting policies proposed by the New Zealand Government. In particular the tension between the heritage protection objectives contained in the Resource Management Act 1991 and the earthquake mitigation measures contained in the Building Act 2004 are examined.
Design/methodology/approach - The paper uses a case study approach based on the Harcourts Building in Wellington New Zealand and the case law relating to attempts to demolish this particular building. Use is made of ANT as a 'lens' to identify and study the controversies around mandatory seismic retrofitting of heritage buildings. The concept of translation is used to draw network diagrams.
Advocates for Compact City, Smart Growth and New Urbanism claim intensification of land use as a means to achieve sustainability imperatives, manage urbanisation and curb peripheral sprawl. It appears policy makers and planners have taken this perspective into consideration over the last two decades as intensification appears more prevalent in policy and planning. Literature points to residential infill as a method of providing for housing development within city limits. While residential infill is recognised in literature, little is known about what it consists of and the different stakeholders involved. This study will document different types of infill, identify various stakeholders associated with the different types and how their roles align and conflict.
Creative temporary or transitional use of vacant urban open spaces is
seldom foreseen in traditional urban planning and has historically been
linked to economic or political disturbances. Christchurch, like most
cities, has had a relatively small stock of vacant spaces throughout
much of its history. This changed dramatically after an earthquake and
several damaging aftershocks hit the city in 2010 and 2011; temporary
uses emerged on post-earthquake sites that ran parallel to the “official”
rebuild discourse and programmes of action. The paper examines
a post-earthquake transitional community-initiated open space (CIOS)
in central Christchurch. CIOS have been established by local community
groups as bottom-up initiatives relying on financial sponsorship,
agreements with local landowners who leave their land for temporary
projects until they are ready to redevelop, and volunteers who build
and maintain the spaces. The paper discusses bottom-up governance
approaches in depth in a single temporary post-earthquake community
garden project using the concepts of community resilience and social
capital. The study analyses and highlights the evolution and actions of
the facilitating community organisation (Greening the Rubble) and the
impact of this on the project. It discusses key actors’ motivations and
values, perceived benefits and challenges, and their current involvement
with the garden. The paper concludes with observations and recommendations about the initiation of such projects and the challenges for those wishing to study ephemeral social recovery phenomena.
This thesis studies the behaviour of diaphragms in multi-storey timber buildings by providing methods for the estimation of the diaphragm force demand, developing an Equivalent Truss Method for the analysis of timber diaphragms, and experimentally investigating the effects of displacement incompatibilities between the diaphragm and the lateral load resisting system and developing methods for their mitigation. The need to better understand the behaviour of diaphragms in timber buildings was highlighted by the recent 2010-2011 Canterbury Earthquake series, where a number of diaphragms in traditional concrete buildings performed poorly, compromising the lateral load resistance of the structure. Although shortcomings in the estimation of force demand, and in the analysis and design of concrete floor diaphragms have already been partially addressed by other researchers, the behaviour of diaphragms in modern multi-storey timber buildings in general, and in low damage Pres-Lam buildings (consisting of post-tensioned timber members) in particular is still unknown. The recent demand of mid-rise commercial timber buildings of ten storeys and beyond has further highlighted the lack of appropriate methods to analyse timber diaphragms with irregular floor geometries and large spans made of both light timber framing and massive timber panels. Due to the lower stiffness of timber lateral load resisting systems, compared with traditional construction materials, and the addition of in-plane flexible diaphragms, the effect of higher modes on the global dynamic behaviour of a structure becomes more critical. The results from a parametric non-linear time-history analysis on a series of timber frame and wall structures showed increased storey shear and moment demands even for four storey structures when compared to simplistic equivalent static analysis. This effect could successfully be predicted with methods available in literature. The presence of diaphragm flexibility increased diaphragm inter-storey drifts and the peak diaphragm demand in stiff wall structures, but had less influence on the storey shears and moments. Diaphragm force demands proved to be significantly higher than the forces derived from equivalent static analysis, leading to potentially unsafe designs. It is suggested to design all diaphragms for the same peak demand; a simplified approach to estimate these diaphragm forces is proposed for both frame and wall structures. Modern architecture often requires complex floor geometries with long spans leading to stress concentrations, high force demands and potentially large deformations in the diaphragms. There is a lack of guidance and regulation regarding the analysis and design of timber diaphragms and a practical alternative to the simplistic equivalent deep beam analysis or costly finite element modelling is required. An Equivalent Truss Method for the analysis of both light timber framed and massive timber diaphragms is proposed, based on analytical formulations and verified against finite element models. With this method the panel unit shear forces (shear flow) and therefore the fastener demand, chord forces and reaction forces can be evaluated. Because the panel stiffness and fastener stiffness are accounted for, diaphragm deflection, torsional effects and transfer forces can also be assessed. The proposed analysis method is intuitive and can be used with basic analysis software. If required, it can easily be adapted for the use with diaphragms working in the non-linear range. Damage to floor diaphragms resulting from displacement incompatibilities due to frame elongation or out-of plane deformation of walls can compromise the transfer of inertial forces to the lateral load resisting system as well as the stability of other structural elements. Two post-tensioned timber frame structures under quasi-static cyclic and dynamic load, respectively, were tested with different diaphragm panel layouts and connections investigating their ability to accommodate frame elongations. Additionally, a post-tensioned timber wall was loaded under horizontal cyclic loads through two pairs of collector beams. Several different connection details between the wall and the beams were tested, and no damage to the collector beams or connections was observed in any of the tests. To evaluate the increased strength and stiffness due to the wall-beam interaction an analytical procedure is presented. Finally, a timber staircase core was tested under bi-directional loading. Different connection details were used to study the effect of displacement incompatibilities between the orthogonal collector beams. These experiments showed that floor damage due to displacement incompatibilities can be prevented, even with high levels of lateral drift, by the flexibility of well-designed connections and the flexibility of the timber elements. It can be concluded that the flexibility of timber members and the flexibility of their connections play a major role in the behaviour of timber buildings in general and of diaphragms specifically under seismic loads. The increased flexibility enhances higher mode effects and alters the diaphragm force demand. Simple methods are provided to account for this effect on the storey shear, moment and drift demands as well as the diaphragm force demands. The analysis of light timber framing and massive timber diaphragms can be successfully analysed with an Equivalent Truss Method, which is calibrated by accounting for the panel shear and fastener stiffnesses. Finally, displacement incompatibilities in frame and wall structures can be accommodated by the flexibilities of the diaphragm panels and relative connections. A design recommendations chapter summarizes all findings and allows a designer to estimate diaphragm forces, to analyse the force path in timber diaphragms and to detail the connections to allow for displacement incompatibilities in multi-storey timber buildings.