Search

found 15 results

Audio, Radio New Zealand

Days after the city of Christchurch was devastated by a 6.3 magnitude earthquake, This Way Up's presenter Simon Morton traverses the city using the Avon River as his route. Travelling on a bicycle from the source of the Avon in the West to Heathcote Estuary in the East, where the Avon meets the Pacific, everyone has a story to tell.

Audio, Radio New Zealand

Days after the city of Christchurch was devastated by a 6.3 magnitude earthquake, This Way Up's presenter Simon Morton traverses the city using the Avon River as his route. Travelling on a bicycle from the source of the Avon in the West to Heathcote Estuary in the East, where the Avon meets the Pacific, everyone has a story to tell.

Images, UC QuakeStudies

The entrance to the West Avon building on Montreal Street. The photographer comments, "This very wonderful Art Deco heritage building in Christchurch had residents living in it until another visit from the building engineers re-re-checking for earthquake damage. Now it is fenced off and on the list for possible demolition".

Images, eqnz.chch.2010

The permanent closure (to motor vehicles) of the Bexley red zone streets has started. This was once the main south-north route just west of the Avon River in the New Brighton area, till an expressway (ring road) was built about 80m to the west (right) about 12-13 years ago. Then it became just another suburban street, but now all the houses ...

Images, UC QuakeStudies

A view down Beresford Street in New Brighton, looking west towards the city at sunset. The photographer comments, "On the other side of the Avon river from New Brighton is the Bexley red zone. Here numerous earthquake damaged streets of houses will be flattened due to it being to uneconomical in the current climate to repair the land to be suitable for housing. There is a campaign at the moment to try and convert all this red zone land, which is mainly adjacent to the Avon river to a giant park".

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence 2010-2011 (CES) induced widespread liquefaction in many parts of Christchurch city. Liquefaction was more commonly observed in the eastern suburbs and along the Avon River where the soils were characterised by thick sandy deposits with a shallow water table. On the other hand, suburbs to the north, west and south of the CBD (e.g. Riccarton, Papanui) exhibited less severe to no liquefaction. These soils were more commonly characterised by inter-layered liquefiable and non-liquefiable deposits. As part of a related large-scale study of the performance of Christchurch soils during the CES, detailed borehole data including CPT, Vs and Vp have been collected for 55 sites in Christchurch. For this subset of Christchurch sites, predictions of liquefaction triggering using the simplified method (Boulanger & Idriss, 2014) indicated that liquefaction was over-predicted for 94% of sites that did not manifest liquefaction during the CES, and under-predicted for 50% of sites that did manifest liquefaction. The focus of this study was to investigate these discrepancies between prediction and observation. To assess if these discrepancies were due to soil-layer interaction and to determine the effect that soil stratification has on the develop-ment of liquefaction and the system response of soil deposits.