A copy of Stars in a Cluster, a book by the Department of Physics and Astronomy at the University of Canterbury. The book was published in 1996 and edited by W. Tobin and G.M. Evans. This PDF version was created in 2014.
A photograph of a temporary installation, titled Antigravity, being created by students from the University of Auckland. Antigravity was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of students from the University of Auckland working on a temporary installation titled Antigravity. Antigravity was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of students from the University of Auckland working on a temporary installation titled CHCH2061. The installation was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of a temporary, inflatable structure, titled Upload, being installed for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014. Upload was created by students from the University of Auckland, in partnership with Chirney Coffee.
A photograph of a temporary, inflatable structure, titled Upload, which was created by students from the University of Auckland, in partnership with Chirney Coffee. Upload was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of a temporary installation titled Antigravity, which was created by students from the University of Auckland, in partnership with Cakes by Anna. Antigravity was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of a temporary installation titled Antigravity, which was created by students from the University of Auckland, in partnership with Cakes by Anna. Antigravity was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of a temporary structure, titled Continuum, being installed for CityUps. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014. Continuum was created by students from the University of Auckland, in partnership with Excuse My French Crepe Cart.
A photograph of a temporary structure, titled Continuum, being installed for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014. Continuum was created by students from the University of Auckland, in partnership with Excuse My French Crepe Cart.
Indigenous Peoples retain traditional coping strategies for disasters despite the marginalisation of many Indigenous communities. This article describes the response of Māori to the Christchurch earthquakes of 2010 and 2012 through analyses of available statistical data and reports, and interviews done three months and one year after the most damaging event. A significant difference between Māori and ‘mainstream’ New Zealand was the greater mobility enacted by Māori throughout this period, with organisations having roles beyond their traditional catchments throughout the disaster, including important support for non-Māori. Informed engagement with Indigenous communities, acknowledging their internal diversity and culturally nuanced support networks, would enable more efficient disaster responses in many countries.
A photograph of cakes made by Cakes By Anna. The cakes are being sold at a temporary installation titled Antigravity, which was created by students from the University of Auckland, in partnership with Cakes by Anna. em>Antigravity was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of a temporary installation titled Equilibrium. Equilibrium was created by architecture students from the University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of students from the University of Auckland working on a temporary installation titled CHCH2016. The installation was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of students from the University of Auckland working on a temporary installation titled CHCH2061. The installation was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
We present the initial findings from a study of adaptive resilience of lifelines organisations providing essential infrastructure services, in Christchurch, New Zealand following the earthquakes of 2010-2011. Qualitative empirical data was collected from 200 individuals in 11 organisations. Analysis using a grounded theory method identified four major factors that aid organisational response, recovery and renewal following major disruptive events. Our data suggest that quality of top and middle-level leadership, quality of external linkages, level of internal collaboration, ability to learn from experience, and staff well-being and engagement influence adaptive resilience. Our data also suggest that adaptive resilience is a process or capacity, not an outcome and that it is contextual. Post-disaster capacity/resources and post-disaster environment influence the nature of adaptive resilience.
The full scale, in-situ investigations of instrumented buildings present an excellent opportunity to observe their dynamic response in as-built environment, which includes all the real physical properties of a structure under study and its surroundings. The recorded responses can be used for better understanding of behavior of structures by extracting their dynamic characteristics. It is significantly valuable to examine the behavior of buildings under different excitation scenarios. The trends in dynamic characteristics, such as modal frequencies and damping ratios, thus developed can provide quantitative data for the variations in the behavior of buildings. Moreover, such studies provide invaluable information for the development and calibration of realistic models for the prediction of seismic response of structures in model updating and structural health monitoring studies. This thesis comprises two parts. The first part presents an evaluation of seismic responses of two instrumented three storey RC buildings under a selection of 50 earthquakes and behavioral changes after Ms=7.1 Darfield (2010) and Ms=6.3 Christchurch (2011) earthquakes for an instrumented eight story RC building. The dynamic characteristics of the instrumented buildings were identified using state-of-the-art N4SID system identification technique. Seismic response trends were developed for the three storey instrumented buildings in light of the identified frequencies and the peak response accelerations (PRA). Frequencies were observed to decrease with excitation level while no trends are discernible for the damping ratios. Soil-structure interaction (SSI) effects were also determined to ascertain their contribution in the seismic response. For the eight storey building, it was found through system identification that strong nonlinearities in the structural response occurred and manifested themselves in all identified natural frequencies of the building that exhibited a marked decrease during the strong motion duration compared to the pre-Darfield earthquakes. Evidence of foundation rocking was also found that led to a slight decrease in the identified modal frequencies. Permanent stiffness loss was also observed after the strong motion events. The second part constitutes developing and calibrating finite element model (FEM) of the instrumented three storey RC building with a shear core. A three dimensional FEM of the building is developed in stages to analyze the effect of structural, non-structural components (NSCs) and SSI on the building dynamics. Further to accurately replicate the response of the building following the response trends developed in the first part of the thesis, sensitivity based model updating technique was applied. The FEMs were calibrated by tuning the updating parameters which are stiffnesses of concrete, NSCs and soil. The updating parameters were found to generally follow decreasing trends with the excitation level. Finally, the updated FEM was used in time history analyses to assess the building seismic performance at the serviceability limit state shaking. Overall, this research will contribute towards better understanding and prediction of the behavior of structures subjected to ground motion.