Search

found 20 results

Images, UC QuakeStudies

A photograph of a kitchen with food and drinks for the emergency management personnel at a temporary Civil Defence headquarters. The headquarters was set up at the Mainland Foundation Ballpark after the 4 September 2010 earthquake.

Images, UC QuakeStudies

Damage to a house in Richmond. Bricks have fallen from a wall, and there is a visible gap between the foundation and the surrounding ground. The photographer comments, "The foundation and a section of the wall of the dining room have shifted and cracked. The dining room floor is very springy".

Images, UC QuakeStudies

A photograph of volunteers from the Wellington Emergency Management Office at the canteen set up as part of a temporary Civil Defence headquarters after the 4 September 2010 earthquake. The headquarters was set up the Mainland Foundation Ballpark on Pages Road.

Images, UC QuakeStudies

A photograph of volunteers from the Wellington Emergency Management Office at the canteen set up as part of a temporary Civil Defence headquarters after the 4 September 2010 earthquake. The headquarters was set up at the Mainland Foundation Ballpark on Pages Road.

Images, UC QuakeStudies

Damage to the Visitors Centre in Kaiapoi, after the September 4th earthquake. The foundation has lifted and there are cracks along the road. Tape and fences bar the public off from access.

Images, UC QuakeStudies

A photograph of a map of Christchurch in a temporary Civil Defence headquarters set up at the Mainland Foundation Ballpark after the 4 September 2010 earthquake. Red, green and blue markings on the map indicate where flooding, sand and closures are located. Post-it notes and a key with a tag reading, "Manchester" are attached to the map.

Research papers, University of Canterbury Library

This paper presents the probabilistic seismic performance and loss assessment of an actual bridge– foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP’s), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismi risk of the system. It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.