Search

found 40 results

Research papers, University of Canterbury Library

Semi-empirical models based on in-situ geotechnical tests have become the standard of practice for predicting soil liquefaction. Since the inception of the “simplified” cyclic-stress model in 1971, variants based on various in-situ tests have been developed, including the Cone Penetration Test (CPT). More recently, prediction models based soley on remotely-sensed data were developed. Similar to systems that provide automated content on earthquake impacts, these “geospatial” models aim to predict liquefaction for rapid response and loss estimation using readily-available data. This data includes (i) common ground-motion intensity measures (e.g., PGA), which can either be provided in near-real-time following an earthquake, or predicted for a future event; and (ii) geospatial parameters derived from digital elevation models, which are used to infer characteristics of the subsurface relevent to liquefaction. However, the predictive capabilities of geospatial and geotechnical models have not been directly compared, which could elucidate techniques for improving the geospatial models, and which would provide a baseline for measuring improvements. Accordingly, this study assesses the realtive efficacy of liquefaction models based on geospatial vs. CPT data using 9,908 case-studies from the 2010-2016 Canterbury earthquakes. While the top-performing models are CPT-based, the geospatial models perform relatively well given their simplicity and low cost. Although further research is needed (e.g., to improve upon the performance of current models), the findings of this study suggest that geospatial models have the potential to provide valuable first-order predictions of liquefaction occurence and consequence. Towards this end, performance assessments of geospatial vs. geotechnical models are ongoing for more than 20 additional global earthquakes.

Research papers, University of Canterbury Library

We measure the longer-term effect of a major earthquake on the local economy, using night-time light intensity measured from space, and investigate whether insurance claim payments for damaged residential property affected the local recovery process. We focus on the destructive Canterbury Earthquake Sequence (CES) 2010 -2011 as our case study. Uniquely for this event, more than 95% of residential housing units were covered by insurance, but insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery and describe the recovery’s determinants. We also find that insurance payments contributed significantly to the process of economic recovery after the earthquake, but delayed payments were less affective and cash settlement of claims were more effective than insurance-managed repairs in contributing to local recovery.

Images, UC QuakeStudies

Damage to a house in Richmond. Bricks have fallen from the walls onto the driveway, and a large gap between the concrete foundation and the wooden framing shows how much the house has moved. The photographer comments, "The foundations and brick cladding moved, but the timber wall remained in position. The gap grew to over 400mm by the time the house was demolished.

Images, UC QuakeStudies

A group of residents stand talking on the footpath beside River Road. The photographer comments, "Our neighbours were mostly already displaced by the Sep 4 2010 quakes. We all happened to arrive at the same time, so we had a good chat. From L-R; Deidre Crichton (389), Julie and Philip Cheyne (391), Marike Begg (363), Susannah and Kim Collins (383), Andy Corbin (389)".

Images, eqnz.chch.2010

I am going away for a short time for a holiday and well get back to you all when I get home. Demotion of the Victoria Sq apartments on a walk around the city Feb 26, 2014 Christchurch New Zealand. www...

Research papers, University of Canterbury Library

Introduction In 2011 Christchurch city centre was partially destroyed by an earthquake. Government-led anchor projects were tasked with bringing Christchurch back from rubble. After a period of 7 years out of 16 proposed projects, 10 are already over time for their initial completion dates and the ones completed, are under scrutiny for failing to deliver their expected outcome.

Research papers, University of Canterbury Library

Well-validated liquefaction constitutive models are increasingly important as non-linear time history analyses become relatively more common in industry for key projects. Previous validation efforts of PM4Sand, a plasticity model specifically for liquefaction, have generally focused on centrifuge tests; however, pore pressure transducers installed at several free-field sites during the Canterbury Earthquake Sequence (CES) in Christchurch, New Zealand provide a relatively unique dataset to validate against. This study presents effective stress site response analyses performed in the finite difference software FLAC to examine the capability of PM4Sand to capture the generation of excess pore pressures during earthquakes. The characterization of the subsurface is primarily based on extensive cone penetration tests (CPT) carried out in Christchurch. Correlations based on penetration resistances are used to estimate soil parameters, such as relative density and shear wave velocity, which affect liquefaction behaviour. The resulting free-field FLAC model is used to estimate time histories of excess pore pressure, which are compared with records during several earthquakes in the CES to assess the suitability of PM4Sand.

Research Papers, Lincoln University

Disasters are often followed by a large-scale stimulus supporting the economy through the built environment, which can last years. During this time, official economic indicators tend to suggest the economy is doing well, but as activity winds down, the sentiment can quickly change. In response to the damaging 2011 earthquakes in Canterbury, New Zealand, the regional economy outpaced national economic growth rates for several years during the rebuild. The repair work on the built environment created years of elevated building activity. However, after the peak of the rebuilding activity, as economic and employment growth retracts below national growth, we are left with the question of how the underlying economy performs during large scale stimulus activity in the built environment. This paper assesses the performance of the underlying economy by quantifying the usual, demand-driven level of building activity at this time. Applying an Input–Output approach and excluding the economic benefit gained from the investment stimulus reveals the performance of the underlying economy. The results reveal a strong growing underlying economy, and while convergence was expected as the stimulus slowed down, the results found that growth had already crossed over for some time. The results reveal that the investment stimulus provides an initial 1.5% to 2% growth buffer from the underlying economy before the growth rates cross over. This supports short-term economic recovery and enables the underlying economy to transition away from a significant rebuild stimulus. Once the growth crosses over, five years after the disaster, economic growth in the underlying economy remains buoyant even if official regional economic data suggest otherwise.

Research papers, University of Canterbury Library

Background This study examines the performance of site response analysis via nonlinear total-stress 1D wave-propagation for modelling site effects in physics-based ground motion simulations of the 2010-2011 Canterbury, New Zealand earthquake sequence. This approach allows for explicit modeling of 3D ground motion phenomena at the regional scale, as well as detailed nonlinear site effects at the local scale. The approach is compared to a more commonly used empirical VS30 (30 m time-averaged shear wave velocity)-based method for computing site amplification as proposed by Graves and Pitarka (2010, 2015), and to empirical ground motion prediction via a ground motion model (GMM).

Research papers, University of Canterbury Library

This paper presents on-going challenges in the present paradigm shift of earthquakeinduced ground motion prediction from empirical to physics-based simulation methods. The 2010-2011 Canterbury and 2016 Kaikoura earthquakes are used to illustrate the predictive potential of the different methods. On-going efforts on simulation validation and theoretical developments are then presented, as well as the demands associated with the need for explicit consideration of modelling uncertainties. Finally, discussion is also given to the tools and databases needed for the efficient utilization of simulated ground motions both in specific engineering projects as well as for near-real-time impact assessment.

Videos, UC QuakeStudies

A video of a presentation by Thomas Petschner during the Resilience and Response Stream of the 2016 People in Disasters Conference. The presentation is titled, "Medical Clowning in Disaster Zones".The abstract for this presentation reads as follows: To be in a crisis caused by different kinds of natural disasters (as well as a man made incidents), dealing with ongoing increase of problems and frequent confrontation with very bad news isn't something that many people can easily cope with. This applies obviously to affected people but also to the members of SAR teams, doctors in the field and the experienced humanitarians too. The appropriate use of humour in crisis situations and dis-functional environments is a great tool to make those difficult moments more bearable for everyone. It helps injured and traumatised people cope with what they're facing, and can help them to recover more quickly too. At the same time humorous thinking can help to solve some of the complex problems emergency responders face. This is in addition to emergency and medical only reactions - allowing for a more holistic human perspective, which can provide a positive lasting effect. The ability to laugh is hardwired into our systems bringing a huge variety of physical, mental and social benefits. Even a simple smile can cultivate optimism and hope, while laughter can boost a hormone cocktail - which helps to cope with pain, enhance the immune system, reduce stress, re-focus, connect and unite people during difficult times. Humour as an element of psychological response in crisis situations is increasingly understood in a much wider sense: as the human capacity to plan and achieve desired outcomes with less stress, thus resulting in more 'predictable' work in unpredictable situations. So, if we approach certain problems in the same way Medical Clowns do, we may find a more positive solution. Everyone knows that laughter is an essential component of a healthy, happy life. The delivery of 'permission to laugh' into disaster zones makes a big difference to the quality of life for everyone, even if it's for a very short, but important period of time. And it's crucial to get it right as there is no second chance for the first response.

Research Papers, Lincoln University

We examined the stratigraphy of alluvial fans formed at the steep range front of the Southern Alps at Te Taho, on the north bank of the Whataroa River in central West Coast, South Island, New Zealand. The range front coincides with the Alpine Fault, an Australian-Pacific plate boundary fault, which produces regular earthquakes. Our study of range front fans revealed aggradation at 100- to 300-year intervals. Radiocarbon ages and soil residence times (SRTs) estimated by a quantitative profile development index allowed us to elucidate the characteristics of four episodes of aggradation since 1000 CE. We postulate a repeating mode of fan behaviour (fan response cycle [FRC]) linked to earthquake cycles via earthquake-triggered landslides. FRCs are characterised by short response time (aggradation followed by incision) and a long phase when channels are entrenched and fan surfaces are stable (persistence time). Currently, the Te Taho and Whataroa River fans are in the latter phase. The four episodes of fan building we determined from an OxCal sequence model correlate to Alpine Fault earthquakes (or other subsidiary events) and support prior landscape evolution studies indicating ≥M7.5 earthquakes as the main driver of episodic sedimentation. Our findings are consistent with other historic non-earthquake events on the West Coast but indicate faster responses than other earthquake sites in New Zealand and elsewhere where rainfall and stream gradients (the basis for stream power) are lower. Judging from the thickness of fan deposits and the short response times, we conclude that pastoral farming (current land-use) on the fans and probably across much of the Whataroa River fan would be impossible for several decades after a major earthquake. The sustainability of regional tourism and agriculture is at risk, more so because of the vulnerability of the single through road in the region (State Highway 6).

Research Papers, Lincoln University

Imagined landscapes find their form in utopian dreaming. As ideal places, utopias are set up according to the ideals of their designers. Inevitably, utopias become compromised when they move from the imaginary into the actual. Opportunities to create utopias rely largely on a blank slate, a landscape unimpeded by the inconveniences of existing occupation – or even topography. Christchurch has seen two utopian moments. The first was at the time of European settlement in the mid-nineteenth century, when imported ideals provided a model for a new city. The earthquakes of 2010 and 2011 provided a second point at which utopian dreaming spurred visions for the city. Christchurch’s earthquakes have provided a unique opportunity for a city to re-imagine itself. Yet, as is the fate for all imaginary places, reality got in the way.

Videos, UC QuakeStudies

A video of a presentation by Dr Sarah Beaven during the Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Leading and Coordinating Social Recovery: Lessons from a central recovery agency".The abstract for this presentation reads as follows: This presentation provides an overview of the Canterbury Earthquake Recovery Authority's Social Recovery Lessons and Legacy project. This project was commissioned in 2014 and completed in December 2015. It had three main aims: to capture Canterbury Earthquake Recovery Authority's role in social recovery after the Canterbury earthquakes, to identify lessons learned, and to disseminate these lessons to future recovery practitioners. The project scope spanned four Canterbury Earthquake Recovery Authority work programmes: The Residential Red Zone, the Social and Cultural Outcomes, the Housing Programme, and the Community Resilience Programme. Participants included both Canterbury Earthquake Recovery Authority employees, people from within a range of regional and national agencies, and community and public sector organisations who worked with Canterbury Earthquake Recovery Authority over time. The presentation will outline the origin and design of the project, and present some key findings.

Videos, UC QuakeStudies

A video of a presentation by Jane Morgan and Annabel Begg during the Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Monitoring Social Recovery in Greater Christchurch".The abstract for this presentation reads as follows: This presentation provides an overview of the Canterbury Earthquake Recovery Authority's Social Recovery Lessons and Legacy project. This project was commissioned in 2014 and completed in December 2015. It had three main aims: to capture Canterbury Earthquake Recovery Authority's role in social recovery after the Canterbury earthquakes, to identify lessons learned, and to disseminate these lessons to future recovery practitioners. The project scope spanned four Canterbury Earthquake Recovery Authority work programmes: The Residential Red Zone, the Social and Cultural Outcomes, the Housing Programme, and the Community Resilience Programme. Participants included both Canterbury Earthquake Recovery Authority employees, people from within a range of regional and national agencies, and community and public sector organisations who worked with Canterbury Earthquake Recovery Authority over time. The presentation will outline the origin and design of the project, and present some key findings.

Research Papers, Lincoln University

Disasters are a critical topic for practitioners of landscape architecture. A fundamental role of the profession is disaster prevention or mitigation through practitioners having a thorough understanding of known threats. Once we reach the ‘other side’ of a disaster – the aftermath – landscape architecture plays a central response in dealing with its consequences, rebuilding of settlements and infrastructure and gaining an enhanced understanding of the causes of any failures. Landscape architecture must respond not only to the physical dimensions of disaster landscapes but also to the social, psychological and spiritual aspects. Landscape’s experiential potency is heightened in disasters in ways that may challenge and extend the spectrum of emotions. Identity is rooted in landscape, and massive transformation through the impact of a disaster can lead to ongoing psychological devastation. Memory and landscape are tightly intertwined as part of individual and collective identities, as connections to place and time. The ruptures caused by disasters present a challenge to remembering the lives lost and the prior condition of the landscape, the intimate attachments to places now gone and even the event itself.

Research papers, Victoria University of Wellington

A natural disaster will inevitably strike New Zealand in the coming years, damaging educational facilities. Delays in building quality replacement facilities will lead to short-term disruption of education, risking long-term inequalities for the affected students. The Christchurch earthquake demonstrated the issues arising from a lack of school planning and support. This research proposes a system that can effectively provide rapid, prefabricated, primary schools in post-disaster environments. The aim is to continue education for children in the short term, while using construction that is suitable until the total replacement of the given school is completed. The expandable prefabricated architecture meets the strength, time, and transport requirements to deliver a robust, rapid relief temporary construction. It is also adaptable to any area within New Zealand. This design solution supports personal well-being and mitigates the risk of educational gaps, PTSD linked with anxiety and depression, and many other mental health disorders that can impact students and teachers after a natural disaster.

Research papers, University of Canterbury Library

Our poster will present on-going QuakeCoRE-founded work on strong motion seismology for Dunedin-Mosgiel area, focusing on ground motion simulations for Dunedin Central Business District (CBD). Source modelling and ground motion simulations are being carried out using the SCEC (Southern California Earthquakes Center) Broad Band simulation Platform (BBP). The platform computes broadband (0-10 Hz) seismograms for earthquakes and was first implemented at the University of Otago in 2016. As large earthquakes has not been experienced in Dunedin in the time of period of instrumental recording, user-specified scenario simulations are of great value. The Akatore Fault, the most active fault in Otago and closest major fault to Dunedin, is the source focused on in the present study. Simulations for various Akatore Fault source scenarios are run and presented. Path and site effects are key components considered in the simulation process. A 1D shear wave velocity profile is required by SCEC BBP, and this is being generated to represent the Akatore-to-CBD path and site within the BBP. A 3D shear velocity model, with high resolution within Dunedin CBD, is being developed in parallel with this study (see Sangster et al. poster). This model will be the basis for developing a 3D shear wave velocity model for greater Dunedin-Mosgiel area for future ground motion simulations, using Canterbury software (currently under development).

Research papers, University of Canterbury Library

The purpose of this research is to investigate men’s experiences of the 2016 7.8 magnitude Kaikōura earthquake and Tsunami. While, research into the impacts of the earthquake has been conducted, few studies have examined how gender shaped people’s experiences of this natural hazard event. Analysing disasters through a gender lens has significantly contributed to disaster scholarship in identifying the resilience and vulnerabilities of individuals and communities pre- and post-disaster (Fordham, 2012; Bradshaw, 2013). This research employs understandings of masculinities (Connell, 2005), to examine men’s strengths and challenges in responding, recovering, and coping following the earthquake. Qualitative inquiry was carried out in Northern Canterbury and Marlborough involving 18 face-to-face interviews with men who were impacted by the Kaikōura earthquake and its aftermath. Interview material is being analysed using thematic and narrative analysis. Some of the preliminary findings have shown that men took on voluntary roles in addition to their fulltime paid work resulting in long hours, poor sleep and little time spent with family. Some men assisted wives and children to high ground then drove into the tsunami zone to check on relatives or to help evacuate people. Although analysis of the findings is currently ongoing, preliminary findings have identified that the men who participated in the study have been negatively impacted by the 2016 Kaikōura earthquake. A theme identified amongst participants was an avoidance to seek support with the challenges they were experiencing due to the earthquake. The research findings align with key characteristics of masculinity, including demonstrating risky behaviours and neglecting self or professional care. This study suggests that these behaviours affect men’s overall resilience, and thus the resilience of the wider community.