IMG_2352
Images, eqnz.chch.2010
The now vacated Christchurch City Council building suffered some damage in the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.
The now vacated Christchurch City Council building suffered some damage in the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.
The now vacated Christchurch City Council building suffered some damage in the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.
Numerous rockfalls released during the 2010β2011 Canterbury earthquake sequence affected vital road sections for local commuters. We quantified rockfall fatality risk on two main routes by adapting a risk approach for roads originally developed for snow avalanche risk. We present results of the collective and individual fatality risks for traffic flow and waiting traffic. Waiting traffic scenarios particularly address the critical spatial-temporal dynamics of risk, which should be acknowledged in operational risk management. Comparing our results with other risks commonly experienced in New Zealand indicates that local rockfall risk is close to tolerability thresholds and likely exceeds acceptable risk.
We present ground motion simulations of the Porters Pass (PP) fault in the Canterbury region of New Zealand; a major active source near Christchurch city. The active segment of the PP fault has an inferred length of 82 km and a mostly strike-slip sense of movement. The PP fault slip makes up approximately 10% of the total 37 mm/yr margin-parallel plate motion and also comprises a significant proportion of the total strain budget in regional tectonics. Given that the closest segment of the fault is less than 45 km from Christchurch city, the PP fault is crucial for accurate earthquake hazard assessment for this major population centre. We have employed the hybrid simulation methodology of Graves and Pitarka (2010, 2015), which combines low (f<1 Hz) and high (f>1 Hz) frequencies into a broadband spectrum. We have used validations from three moderate magnitude events (ππ€4.6 Sept 04, 2010; ππ€4.6 Nov 06, 2010; ππ€4.9 Apr 29, 2011) to build confidence for the ππ€ > 7 PP simulations. Thus far, our simulations include multiple rupture scenarios which test the impacts of hypocentre location and the finite-fault stochastic rupture representation of the source itself. In particular, we have identified the need to use location-specific 1D ππ /ππ models for the high frequency part of the simulations to better match observations.