Nat's been working on Earthquake relief in Christchurch with the development of the Christchurch Recovery Map and when not doing that, he's been looking at the iPad II, 3D Printers for schools, anti-lasers and other cutting edge tech.
An entry from Ruth Gardner's blog for 20 August 2011 entitled, "Diverse Drilling".
An entry from Ruth Gardner's blog for 12 September 2010 entitled, "Volunteer Quake-catchers".
A video of an interview with Tony Simpson, Principal of Phillipstown School, about the technology centre at the school. This video is part of a series which looks at the innovative projects which will be lost if the Ministry of Education pushes ahead with its school closure and merger plans.
Slides from a presentation by Dr Christopher Thomson (UC Digital Humanities Programme) on "CEISMIC and the Role of a Digital Archive".
Soil Liquefaction during Recent Large-Scale Earthquakes contains selected papers presented at the New Zealand – Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes (Auckland, New Zealand, 2-3 December 2013). The 2010-2011 Canterbury earthquakes in New Zealand and the 2011 off the Pacific Coast of Tohoku Earthquake in Japan have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a very wide extent of urban areas unseen in past destructive earthquakes. While soil liquefaction occurred in naturally-sedimented soil formations in Christchurch, most of the areas which liquefied in Tokyo Bay area were reclaimed soil and artificial fill deposits, thus providing researchers with a wide range of soil deposits to characterize soil and site response to large-scale earthquake shaking. Although these earthquakes in New Zealand and Japan caused extensive damage to life and property, they also serve as an opportunity to understand better the response of soil and building foundations to such large-scale earthquake shaking. With the wealth of information obtained in the aftermath of both earthquakes, information-sharing and knowledge-exchange are vital in arriving at liquefaction-proof urban areas in both countries. Data regarding the observed damage to residential houses as well as the lessons learnt are essential for the rebuilding efforts in the coming years and in mitigating buildings located in regions with high liquefaction potential. As part of the MBIE-JSPS collaborative research programme, the Geomechanics Group of the University of Auckland and the Geotechnical Engineering Laboratory of the University of Tokyo co-hosted the workshop to bring together researchers to review the findings and observations from recent large-scale earthquakes related to soil liquefaction and discuss possible measures to mitigate future damage. http://librarysearch.auckland.ac.nz/UOA2_A:Combined_Local:uoa_alma21151785130002091
A map showing the proposed location of the Tait Communications business and technology campus.
The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand, earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e., anchorages having plates on the exterior facade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation, and the use of metal mesh sleeves. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5° to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a summary of the performed experimental program and test results, and a proposed pull-out capacity relationship for adhesive anchors installed into multi-leaf clay brick masonry are presented herein. AM - Accepted Manuscript
Following a damaging earthquake, the immediate emergency response is focused on individual collapsed buildings or other "hotspots" rather than the overall state of damage. This lack of attention to the global damage condition of the affected region can lead to the reporting of misinformation and generate confusion, causing difficulties when attempting to determine the level of postdisaster resources required. A pre-planned building damage survey based on the transect method is recommended as a simple tool to generate an estimate of the overall level of building damage in a city or region. A methodology for such a transect survey is suggested, and an example of a similar survey conducted in Christchurch, New Zealand, following the 22 February 2011 earthquake is presented. The transect was found to give suitably accurate estimates of building damage at a time when information was keenly sought by government authorities and the general public. VoR - Version of Record
A photograph of crowds at the LUXCITY event.
Slides from the presentation by Professor Mark Billinghurst (HITLabNZ) on "Using Augmented Reality to Commemorate Christchurch".
There is a now a rich literature on the connections between digital media, networked computing, and the shaping of urban material cultures. Much less has addressed the post-disaster context, like we face in Christchurch, where it is more a case of re-build rather than re-new. In what follows I suggest that Lev Manovich’s well-known distinction between narrative and database as distinct but related cultural forms is a useful framework for thinking about the Christchurch rebuild, and perhaps urbanism more generally.
Our tech/science correspondent Peter Griffin takes a look at technology use after the Christchurch earthquake. Plus version 2 of the iPad.
The cartoon shows a room full of dying electronic gadgets like television, sound systems, a digital phone, a computer etc. and a wood burning stove, a candle, an analogue phone and a barbecue that are old technology and so very useful after the Christchurch earthquake of 22 February 2011. The barbecue says 'How can we retire? These youngsters can't cut it!' Published in The Press Quantity: 1 digital cartoon(s).
The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, an inventory of the stone masonry buildings in Christchurch and surrounding areas was carried out in order to assemble a database containing the characteristic features of the building stock, as a basis for studying the vulnerability factors that might have influenced the seismic performance of the stone masonry building stock during the Canterbury earthquake sequence. The damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described using a specific survey procedure currently in use in Italy. The observed performance of seismic retrofit interventions applied to stone masonry buildings is also described, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the utility of such strengthening techniques when applied to unreinforced stone masonry structures. AM - Accepted Manuscript
Scientists in Europe have developed a technology which could be used to find survivors buried in rubble from collapsed buildings in events like the Christchurch and Japanese earthquakes.
A PDF copy of pages 50-51 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'LUXCITY'. Photographs: Bridget Anderson and Douglas Horrell
An entry from Ruth Gardner's Blog for 11 January 2014 entitled, "Sumner Sirens".
A photograph of a planning meeting for the Info Gap temporary outdoor display space.
Post-tensioned timber technology was originally developed and researched at the University of Canterbury (UC) in New Zealand in 2005. It can provide a low-damage seismic design solution for multi-storey mass timber buildings. Since mass timber products, such as cross-laminated timber (CLT), have high in-plane stiffness, a post-tensioned timber shear wall will deform mainly in a rocking mechanism. The moment capacity of the wall at the base is commonly determined using the elastic form of the Modified Monolithic Beam Analogy (MMBA). In the calculation of the moment capacity at the wall base, it is critical to accurately predict the location of the neutral axis and the timber compressive stress distribution. Three 2/3 scale 8.6m tall post-tensioned CLT walls were experimentally tested under quasi-static cyclic loading – both uni-directional and bi-directional- in this study. These specimens included a single wall, a coupled wall, and a C-shaped core-wall. The main objective was to develop post-tensioned C-shaped timber core-walls for tall timber buildings with enhanced lateral strength and stiffness. To better understand the timber compressive stress distributions at the wall base, particle tracking technology (PTT) technology was applied for the first time to investigate the behaviour of the compression toe. Previous post-tensioned timber testing primarily used the displacement measurements to determine the timber compressive behavior at the wall base or rocking interfaces. However, by using PTT technology, the timber strain measurements in the compression zone can be much more accurate as PTT is able to track the movement of many particles on the timber surface. This paper presents experimental testing results of post-tensioned CLT walls with a focus on capturing timber compressive behavior using PTT. The PTT measurements were able to better capture small base rotations which occurred at the onset of gap opening and capture unexpected phenomena in core-wall tests. The single wall test result herein presented indicates that while the MMBA could predict the moment rotation behavior with reasonable accuracy, the peak strain response was under predicted in the compression toe. Further detailed study is required to better understand the complex strain fields generated reflective of the inherent cross-thickness inhomogeneity and material variability of CLT.
A photograph of a meeting being held in the Central Library Peterborough.
A photograph of volunteers at the Info Gap temporary outdoor display space on the corner of Peterborough and Colombo Streets.
A photograph of volunteers constructing the Info Gap temporary outdoor display space on the corner of Peterborough and Colombo Streets.
A photograph of an installation titled 'Halo', which is part of the LUXCITY event.
Mr Wayne Tobeck, Director of Southrim Group (SRG), sponsored this 2013 MEM Project titled; A Technical and Economic Feasibility Study for the Integration of GSHP Technology in the Christchurch Rebuild. Following the recent Christchurch earthquakes, a significant amount of land has become too unstable to support traditional building foundations. This creates an opportunity to implement new and unique foundation designs previously unconsidered due to high costs compared to traditional methods. One such design proposes that an Injection Micro-Piling technique could be used. This can also be coupled with HVAC technology to create a Ground Source Heat Pump (GSHP) arrangement in both new buildings and as retrofits for building requiring foundation repair. The purpose of this study was to complete a feasibility study on the merits of SRG pursuing this proposed product. A significant market for such a product was found to exist, while the product was also found to be technically and legally feasible. However, the proposed product was found to not be economically feasible with respect to Air Source Heat Pumps due to the significantly higher capital and installation costs required. Further analysis suggests GSHPs may become more economically attractive in operating temperatures lower than -9oC, though the existence of markets with this climate in NZ has not been studied. It is therefore suggested that SRG do not proceed with plans to develop a GSHP coupled foundation solution for the Christchurch rebuild.
A photograph of part of the display structure for the Info Gap temporary outdoor display space. The structure is sitting behind the Gap Filler headquarters in Sydenham.
A photograph of the empty site on the corner of Peterborough and Colombo Streets where the Info Gap temporary outdoor display space will be constructed.
A photograph of people looking at displays in the Info Gap temporary outdoor display space on the corner of Peterborough and Colombo Streets.
A photograph of people looking at displays in the Info Gap temporary outdoor display space on the corner of Peterborough and Colombo Streets.
Describes an extensive experimental program at the University of Canterbury, for the development of new structural systems and connections for multi-storey laminated veneer lumber (LVL) timber buildings in earthquake-prone areas. The proposed innovative ductile timber connections are conceptually similar to recent seismic solutions successfully developed for precast concrete multi- storey buildings. The paper gives an overview of the research program, and the results of quasi-static cyclic tests on frame subassemblies, including exterior beam-column joints and cantilever columns, as well as pseudo-dynamic tests on cantilever columns. The experimental results showed significant dissipation of hysteretic energy, good self-centering capacity and no appreciable damage of the structural elements, confirming the expected enhanced performance of the proposed structural systems.