St Martins Library Taken several days after the 6.3 magnatude quake hit Christchurch 22 February 2011. Processed in HDR to capture some of the "feeling" when thinking about the loss of lives when the quake hit.
Photograph captioned by Fairfax, "Damage from the February 22nd earthquake in Christchurch. Massive liquefaction on St Martins Road in St Martins, Christchurch".
Photograph captioned by Fairfax, "Damage from the February 22nd earthquake in Christchurch. Massive liquefaction on St Martins Road in St Martins, Christchurch".
Photograph captioned by Fairfax, "Damage from the February 22nd earthquake in Christchurch. Massive liquefaction on St Martins Road in St Martins, Christchurch".
Photograph captioned by Fairfax, "Damage from the February 22nd earthquake in Christchurch. Liquefaction at the St Martins Shopping Centre in St Martins, Christchurch".
Photograph captioned by Fairfax, "Damage from the February 22nd earthquake in Christchurch. Liquefaction at the St Martins Shopping Centre in St Martins, Christchurch".
Photograph captioned by Fairfax, "Damage from the February 22nd earthquake in Christchurch. Liquefaction at the St Martins Shopping Centre in St Martins, Christchurch".
Photograph captioned by Fairfax, "Damage from the February 22nd earthquake in Christchurch. Liquefaction at the St Martins Shopping Centre in St Martins, Christchurch".
Photograph captioned by Fairfax, "Damage from the February 22nd earthquake in Christchurch. Liquefaction at the St Martins Shopping Centre and New World supermarket in St Martins, Christchurch".
Photograph captioned by Fairfax, "Damage from the February 22nd earthquake in Christchurch. Liquefaction at the St Martins Shopping Centre and New World supermarket in St Martins, Christchurch".
Cars driving through flooding and liquefaction on St Martins Road.
Photograph captioned by Fairfax, "St Martins Road bridge prior to closure today".
An infographic showing the status of houses in St Martins, Sydenham, and Opawa.
A photograph of stencilled street art on a fence beside the St Martins Road roundabout. The stencil, created by Kerry Parnell, depicts daleks and space invaders, and reads, "Now panic and freak out".
Photograph captioned by Fairfax, "The St Martins shopping centre and supermarket are a wasteland of inactivity".
A PDF copy of pages 72-73 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'Now Panic and Freak Out'. Photo: Gaby Montejo
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Chris Piper in his family's St Martins ruined house where structural damage has probably written it off".
Photograph captioned by Fairfax, "John Arbuckle, owner of St Martins Garage Ltd, with one of his two 60,000 litre fuel tanks that are being removed to be checked for earthquake damage. The fibreglass tanks haven't leaked, but had moved following the Heathcote shake".
A video of an interview with Mayor Bob Parker, recorded at the Civil Defence Headquarters in the Christchurch Art Gallery on the evening of the 22 February 2011. Parker talks about the fatalities and damage caused by the 22 February 2011 earthquake.
Spatial variations in river facies exerted a strong influence on the distribution of liquefaction features observed in Christchurch during the 2010-11 Canterbury Earthquake Sequence (CES). Liquefaction and liquefaction-induced ground deformation was primarily concentrated near modern waterways and areas underlain by Holocene fluvial deposits with shallow water tables (< 1 to 2 m). In southern Christchurch, spatial variations of liquefaction and subsidence were documented in the suburbs within inner meander loops of the Heathcote River. Newly acquired geospatial data, geotechnical reports and eye-witness discussions are compiled to provide a detailed account of the surficial effects of CES liquefaction and ground deformation adjacent to the Heathcote River. LiDAR data and aerial photography are used to produce a new series of original figures which reveal the locations of recurrent liquefaction and subsidence. To investigate why variable liquefaction patterns occurred, the distribution of surface ejecta and associated ground damage is compared with near-surface sedimentologic, topographic, and geomorphic variability to seek relationships between the near-surface properties and observed ground damages. The most severe liquefaction was concentrated within a topographic low in the suburb of St Martins, an inner meander loop of the Heathcote River, with liquefaction only minor or absent in the surrounding areas. Subsurface investigations at two sites in St Martins enable documentation of fluvial stratigraphy, the expressions of liquefaction, and identification of pre-CES liquefaction features. Excavation to water table depths (~1.5 m below the surface) across sand boils reveals multiple generations of CES liquefaction dikes and sills that cross-cut Holocene fluvial and anthropogenic stratigraphy. Based on in situ geotechnical tests (CPT) indicating sediment with a factor of safety < 1, the majority of surface ejecta was sourced from well-sorted fine to medium sand at < 5 m depth, with the most damaging liquefaction corresponding with the location of a low-lying sandy paleochannel, a remnant river channel from the Holocene migration of the meander in St Martins. In the adjacent suburb of Beckenham, where migration of the Heathcote River has been laterally confined by topography associated with the volcanic lithologies of Banks Peninsula, severe liquefaction was absent with only minor sand boils occurring closest to the modern river channel. Auger sampling across the suburb revealed thick (>1 m) clay-rich overbank and back swamp sediments that produced a stratigraphy which likely confined the units susceptible to liquefaction and prevented widespread ejection of liquefied material. This analysis suggests river migration promotes the formation and preservation of fluvial deposits prone to liquefaction. Trenching revealed the strongest CES earthquakes with large vertical accelerations favoured sill formation and severe subsidence at highly susceptible locations corresponding with an abandoned channel. Less vulnerable sites containing deeper and thinner sand bodies only liquefied in the strongest and most proximal earthquakes forming minor localised liquefaction features. Liquefaction was less prominent and severe subsidence was absent where lateral confinement of a Heathcote meander has promoted the formation of fluvial stratum resistant to liquefaction. Correlating CES liquefaction with geomorphic interpretations of Christchurch’s Heathcote River highlights methods in which the performance of liquefaction susceptibility models can be improved. These include developing a reliable proxy for estimating soil conditions in meandering fluvial systems by interpreting the geology and geomorphology, derived from LiDAR data and modern river morphology, to improve the methods of accounting for the susceptibility of an area. Combining geomorphic interpretations with geotechnical data can be applied elsewhere to identify regional liquefaction susceptibilities, improve existing liquefaction susceptibility datasets, and predict future earthquake damage.