Evaluation of Liquefaction Potential Index (LPI) for Assessing Liquefactio…
Research papers, University of Canterbury Library
None
None
This report presents an overview of the soil profile characteristics at a number of strong motion station (SMS) sites in Christchurch and its surrounds. An extensive database of ground motion records has been captured by the SMS network in the Canterbury region during the Canterbury earthquake sequence. However in order to comprehensively understand the ground motions recorded at these sites and to be able to relate these motions to other locations, a detailed understanding of the shallow geotechnical profile at each SMS is required. The original NZS1170.5 (SNZ 2004) site subsoil classifications for each SMS site is based on regional geological information and well logs located at varying distances from the site. Given the variability of Christchurch soils, more detailed investigations are required in close vicinity to each SMS to better understand stratigraphy and soil properties, which are important in seismic site response. In this regard, CPT, SPT and borehole data, shear wave velocity (Vs) profiles, and horizontal to vertical spectral ratio measurements (H/V) in close vicinity to the SMS were used to develop representative soil profiles at each site. NZS1170.5 (SNZ 2004) site subsoil classifications were updated using Vs and SPT N60 criteria. Site class E boundaries were treated as a sliding scale rather than as a discrete boundary to account for locations with similar site effects potential, an approach which was shown to result in a better delineation between the site classes. SPT N60 values often indicate a stiffer site class than the Vs data for softer soil sites, highlighting the disparity between the two site investigation techniques. Both SPT N60 and Vs based site classes did not always agree with the original site classifications. This emphasises the importance of having detailed site‐specific information at SMS locations in order to properly classify them. Furthermore, additional studies are required to harmonize site classification based on SPT N60 and Vs. Liquefaction triggering assessments were carried out for the Darfield and Christchurch earthquakes, and compared against observed liquefaction surface manifestations and ground motions characteristics at each SMS. In general, the characteristics of the recorded ground motions at each site correlate well with the triggering analyses. However, at sites that likely liquefied at depth (as indicated by triggering analyses and/or inferred from the characteristics of the recorded surface acceleration time series), the presence of a non‐liquefiable crust layer at many of the SMS locations prevented the manifestation of any surface effects.
This paper presents insights from recent advanced laboratory testing of undisturbed and reconstituted specimens of Christchurch silty-sands. The purpose of the testing was to establish the cyclic strength of silty-sands from sites in the Central Business District (CBD), where liquefaction was observed in 4 September 2010, 22 February 2011, and 13 June 2011. Similar overall strengths were obtained from undisturbed and reconstituted tests prepared at similar densities, albeit with higher variability for the reconstituted specimens. Reconstituted specimens exhibited distinctly different response in terms of lower compressibility during initial loading cycles, and exhibited a more brittle response when large strains were mobilised, particularly for samples with high fines content. Given the lower variability in natural sample response and the possibility of age-related strength to be significant for sites not subjected to earthquakes, high quality undisturbed samples are recommended over the use of reconstituted specimens to establish the cyclic strength of natural sands.
The purpose of this thesis is to evaluate the seismic response of the UC Physics Building based on recorded ground motions during the Canterbury earthquakes, and to use the recorded response to evaluate the efficacy of various conventional structural analysis modelling assumptions. The recorded instrument data is examined and analysed to determine how the UC Physics Building performed during the earthquake-induced ground motions. Ten of the largest earthquake events from the 2010-11 Canterbury earthquake sequence are selected in order to understand the seismic response under various levels of demand. Peak response amplitude values are found which characterise the demand from each event. Spectral analysis techniques are utilised to find the natural periods of the structure in each orthogonal direction. Significant torsional and rocking responses are also identified from the recorded ground motions. In addition, the observed building response is used to scrutinise the adequacy of NZ design code prescriptions for fundamental period, response spectra, floor acceleration and effective member stiffness. The efficacy of conventional numerical modelling assumptions for representing the UC Physics Building are examined using the observed building response. The numerical models comprise of the following: a one dimensional multi degree of freedom model, a two dimensional model along each axis of the building and a three dimensional model. Both moderate and strong ground motion records are used to examine the response and subsequently clarify the importance of linear and non-linear responses and the inclusion of base flexibility. The effects of soil-structure interaction are found to be significant in the transverse direction but not the longitudinal direction. Non-linear models predict minor in-elastic behaviour in both directions during the 4 September 2010 Mw 7.1 Darfield earthquake. The observed torsional response is found to be accurately captured by the three dimensional model by considering the interaction between the UC Physics Building and the adjacent structure. With the inclusion of adequate numerical modelling assumptions, the structural response is able to be predicted to within 10% for the majority of the earthquake events considered.