This paper examines the consistency of seismicity and ground motion models, used for seismic hazard analysis in New Zealand, with the observations in the Canterbury earthquakes. An overview is first given of seismicity and ground motion modelling as inputs of probabilistic seismic hazard analysis, whose results form the basis for elastic response spectra in NZS1170.5:2004. The magnitude of earthquakes in the Canterbury earthquake sequence are adequately allowed for in the current NZ seismicity model, however the consideration of ‘background’ earthquakes as point sources at a minimum depth of 10km results in up to a 60% underestimation of the ground motions that such events produce. The ground motion model used in conventional NZ seismic hazard analysis is shown to provide biased predictions of response spectra (over-prediction near T=0.2s , and under-predictions at moderate-to-large vibration periods). Improved ground motion prediction can be achieved using more recent NZ-specific models.
An entry from Ruth Gardner's blog for 24 March 2012 entitled, "Seismic Squeaks".
A video of the opening address by Christchurch Mayor Bob Parker, at the 2012 Seismics and the City forum.
Utility managers are always looking for appropriate tools to estimate seismic damage in wastewater networks located in earthquake prone areas. Fragility curves, as an appropriate tool, are recommended for seismic vulnerability analysis of buried pipelines, including pressurised and unpressurised networks. Fragility curves are developed in pressurised networks mainly for water networks. Fragility curves are also recommended for seismic analysis in unpressurised networks. Applying fragility curves in unpressurised networks affects accuracy of seismic damage estimation. This study shows limitations of these curves in unpressurised networks. Multiple case study analysis was applied to demonstrate the limitations of the application of fragility curves in unpressurised networks in New Zealand. Four wastewater networks within New Zealand were selected as case studies and various fragility curves used for seismic damage estimation. Observed damage in unpressurised networks after the 2007 earthquake in Gisborne and the 2010 earthquake in Christchurch demonstrate the appropriateness of the applied fragility curves to New Zealand wastewater networks. This study shows that the application of fragility curves, which are developed from pressurised networks, cannot be accurately used for seismic damage assessment in unpressurised wastewater networks. This study demonstrated the effects of different parameters on seismic damage vulnerability of unpressurised networks.
The objective of this project is to collect perishable seismic response data from the baseisolated Christchurch Women's Hospital. The strong and continuing sequence of aftershocks presents a unique opportunity to capture high-fidelity data from a modern base-isolated facility. These measurements will provide quantitative information required to assess the mechanisms at play in this and in many other seismically-isolated structures.
A preliminary case study assessing the seismic sustainability of two reinforced concrete structures, a frame structure and a wall structure, was conducted to determine which structural system is more seismically sustainable. The two structures were designed to the same standards and were assumed to be located in Christchurch, New Zealand. A component-based probabilistic seismic loss assessment, considering direct losses only, was conducted for two ground motion records, regarded to approximately represent a 1 in 500 year earthquake event and a 1 in 2500 year earthquake event, respectively. It is shown that the wall structure results in lower direct losses than the frame structure in the less severe ground motion scenario. However, in the more severe ground motion scenario, the frame structure results in lower direct losses. Hence, this study demonstrates that which structural system has the lower direct losses depends on the ground motion intensity level.
A video of the second part of an address by Dr. Rod Carr, Vice Chancellor of the University of Canterbury, at the 2012 Seismics and the City forum. Dr. Carr talks about how the University coped with the immediate disruption caused by the February earthquake, and turned a crisis into an opportunity by strengthening its learning and innovation roles in seismic-related areas and other domains.
A video of the first part of an address by Dr. Rod Carr, Vice Chancellor of the University of Canterbury, at the 2012 Seismics and the City forum. Dr. Carr talks about how the University coped with the immediate disruption caused by the February earthquake, and turned a crisis into an opportunity by strengthening its learning and innovation roles in seismic-related areas and other domains.
An update on trout spawning in the Avon River and notes on the effects of seismic activity on physical habitat
The Mw 7.1 Darfield earthquake generated a ~30 km long surface rupture on the Greendale Fault and significant surface deformation related to related blind faults on a previously unrecognized fault system beneath the Canterbury Plains. This earthquake provided the opportunity for research into the patterns and mechanisms of co-seismic and post-seismic crustal deformation. In this thesis I use multiple across-fault EDM surveys, logic trees, surface investigations and deformation feature mapping, seismic reflection surveying, and survey mark (cadastral) re-occupation using GPS to quantify surface displacements at a variety of temporal and spatial scales. My field mapping investigations identified shaking and crustal displacement-induced surface deformation features south and southwest of Christchurch and in the vicinity of the projected surface traces of the Hororata Blind and Charing Cross Faults. The data are consistent with the high peak ground accelerations and broad surface warping due to underlying reverse faulting on the Hororata Blind Fault and Charing Cross Fault. I measured varying amounts of post-seismic displacement at four of five locations that crossed the Greendale Fault. None of the data showed evidence for localized dextral creep on the Greendale Fault surface trace, consistent with other studies showing only minimal regional post-seismic deformation. Instead, the post-seismic deformation field suggests an apparent westward translation of northern parts of the across-fault surveys relative to the southern parts of the surveys that I attribute to post-mainshock creep on blind thrusts and/or other unidentified structures. The seismic surveys identified a deformation zone in the gravels that we attribute to the Hororata Blind Fault but the Charing Cross fault was not able to be identified on the survey. Cadastral re-surveys indicate a deformation field consistent with previously published geodetic data. We use this deformation with regional strain rates to estimate earthquake recurrence intervals of ~7000 to > 14,000 yrs on the Hororata Blind and Charing Cross Faults.
The University of Canterbury has initialized a research program focusing on the seismic sustainability of structures. As part of this program, the relative seismic sustainability of various structures will be assessed to identify those with the highest sustainability for the Christchurch rebuild and general use in New Zealand. This preliminary case study assesses one reinforced concrete (RC) frame structure and one RC wall structure. The scenario loss is evaluated for two earthquake records considering direct losses only in order to explain and illustrate the methodology.
A video of an address by Peter Davie, Chief Executive of Lyttelton Port Company, at the 2012 Seismics and the City forum. The talk is about how, in today's technological and economic environment, the ability to prevent, prepare for, or quickly recover from a disaster is a critical success factor. The seismic simulations that the Port of Lyttelton ran as part of its long term development plan became a key part of the Port's emergency response, and meant that cargo kept flowing with minimal downtime.
The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, the damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described. A detailed technical description of the most prevalently observed failure mechanisms is provided, with reference to recognised failure modes for unreinforced masonry structures. The observed performance of existing seismic retrofit interventions is also provided, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the vulnerability of similar strengthening techniques when applied to unreinforced stone masonry structures.
Following the magnitude 6.3 aftershock in Christchurch, New Zealand, on 22 February 2011, a number of researchers were sent to Christchurch as part of the New Zealand Natural Hazard Research Platform funded “Project Masonry” Recovery Project. Their goal was to document and interpret the damage to the masonry buildings and churches in the region. Approximately 650 unreinforced and retrofitted clay brick masonry buildings in the Christchurch area were surveyed for commonly occurring failure patterns and collapse mechanisms. The entire building stock of Christchurch, and in particular the unreinforced masonry building stock, is similar to that in the rest of New Zealand, Australia, and abroad, so the observations made here are relevant for the entire world.
Following the Christchurch earthquake of 22 February 2011 a number of researchers were sent to Christchurch, New Zealand to document the damage to masonry buildings as part of “Project Masonry”. Coordinated by the Universities of Auckland and Adelaide, researchers came from Australia, New Zealand, Canada, Italy, Portugal and the US. The types of masonry investigated were unreinforced clay brick masonry, unreinforced stone masonry, reinforced concrete masonry, residential masonry veneer and churches; masonry infill was not part of this study. This paper focuses on the progress of the unreinforced masonry (URM) component of Project Masonry. To date the research team has completed raw data collection on over 600 URM buildings in the Christchurch area. The results from this study will be extremely relevant to Australian cities since URM buildings in New Zealand are similar to those in Australia.
Damage to New Brighton Bridge.
Damage to New Brighton Bridge.
Stopbanks around the lower Avon River.
A video of an address by Jim Boult, Chief Executive of Christchurch International Airport Ltd, at the 2012 Seismics and the City forum. The talk covers the major challenge of keeping Christchurch International Airport open since 4 September 2010, and explores the role of the airport in the changed business and tourism environment.
A video of the first part of an address by Dr. Fran Vertue, Clinical Psychologist, at the 2012 Seismics and the City forum. Dr. Vertue uses the concept of Post Traumatic Growth to describe opportunities for post disaster-growth at both the personal and organisational levels, which is linked to the resilience of the people concerned.
A video of an address by John Vale, Chief Executive of Vynco, at the 2012 Seismics and the City forum. The talk covers how business continuity planning proved to be crucial to the Vynco's survival, and how the company's employees were able to work in new ways to keep export channels open and flowing.
A video of the second part of an address by Dr. Fran Vertue, Clinical Psychologist, at the 2012 Seismics and the City forum. Dr. Vertue uses the concept of Post Traumatic Growth to describe opportunities for post disaster-growth at both the personal and organisational levels, which is linked to the resilience of the people concerned.
Damaged road in Bexley.
Stopbanks around Bexley Wetland.
Stopbanks around Bexley Wetland.
Damage to houses in Bexley.
A video of the second part of a keynote address by Andrew Fennell, South Island Manager of TelstraClear, at the 2012 Seismics and the City forum. The talk focuses on leadership in challenging times and an organisation's preparedness to handle major business interruptions. TelstraClear's role in restoring and maintaining telecommunications in Canterbury is used as an example.
A video of the first part of an address by Dr. John Vargo from the UC branch of Resilient Organisations, at the 2012 Seismics and the City forum. The talk covers case studies from the Canterbury Earthquakes, which shed light on the ingredients of a resilient organisational culture and best business practices for enhancing resilience.
A video of the second part of an address by Dr. John Vargo from the UC branch of Resilient Organisations, at the 2012 Seismics and the City forum. The talk covers case studies from the Canterbury Earthquakes, which shed light on the ingredients of a resilient organisational culture and best business practices for enhancing resilience.
A video of the first part of a keynote address by Andrew Fennell, South Island Manager of TelstraClear, at the 2012 Seismics and the City forum. The talk focuses on leadership in challenging times and an organisation's preparedness to handle major business interruptions. TelstraClear's role in restoring and maintaining telecommunications in Canterbury is used as an example.