Blog of New Zealander Helen Leggatt who is researching church headstones in Canterbury. In 2012 she photographed headstones damaged during the Canterbury earthquake.
Dealing with the aftermath of the Christchurch earthquakes is a challenge unlike any New Zealand has faced in its history.
The earthquakes in Canterbury may have brought tragedy and economic hardship for many, but Christchurch business leaders say they're now seeing renewed signs of improving business confidence.
With half his life work destroyed by earthquakes, Christchurch conservator Graham Stewart is on a mission to save what is left of Canterbury's remarkable stained glass history.
A video of a tour of the historic Canterbury Club building on Cambridge Terrace. The club will reopen on 9 June 2012, after an intensive rebuild and restoration process which has fixed the damage from the 22 February 2011 earthquake. The video also includes an interview with Dr Brent Stanley, the Canterbury Club President. Stanley talks about the strengthening work that was done in 2009, as well as the history of the club.
The demand for a new approach to safeguarding New Zealand’s endangered historic buildings was identified as a result of the recent increase in building code and strengthening requirements following the Christchurch earthquakes of 2010-2011. The Wellington City Council identified 266 heritage buildings in the city that must be either strengthened or demolished to address these increased requirements. This thesis explores this threat as an opportunity for researching how contemporary design interventions can be challenged to both strengthen and become active participants in the ongoing history of New Zealand’s potentially endangered historic buildings. This thesis challenges the current approach of completely ‘restoring’ 19th-20th century historic buildings in New Zealand, to develop techniques that structurally reinforce historic buildings while inviting the progressive weathering of a building to remain as a testament to its history. This thesis proposes a structural intervention that is responsive to the progressive history of historic buildings, simultaneously introducing a contemporary structural intervention that both participates in and compliments the progressive historic transformations of the vehicle. This thesis argues that current historic buildings in semi-decayed states in fact enable visitors to witness multiple stages in the life of a building, while fully restored buildings only enable visitors to witness the original form of the building. This thesis proposes a model for contemporary intervention within historic buildings that draws a design intervention from seismic strengthening.The notion of layering is explored as a design approach to incorporate the contemporary with the historic as an additional layer of exposed on-going history, thereby further exposing the layers of history evident within New Zealand’s historic buildings. This thesis combines layering theories of architects Louis Kahn and Carlo Scarpa with related theories of installation artist Mary Miss. The theoretical imperatives of Scarpa and Kahn are explored as a tool of engagement for the junction between the contemporary and historic building materials, and the work of Marry Miss is explored as a design approach for developing a contemporary intervention that references the layered historic building while inviting new means of occupancy between layers. The selected vehicle for the design research investigation is the Albemarle Hotel on Ghuznee Street in Wellington. The techniques proposed in this thesis to strengthen the Albemarle Hotel suggest an approach that might be applied to New Zealand’s wider body of historic buildings that constitute New Zealand’s heritage fabric, ultimately protecting them from demolition while preserving additional layers of their historic narratives. Over all the design research experiments suggest that contemporary interventions derived from structural strengthening may be a viable and cost-effective method of re-inhabiting New Zealand’s endangered heritage buildings, avoiding demolition and securing New Zealand’s heritage for future generations. Research Questions: This thesis challenges the current economically unsustainable approach of laterally reinforcing and completely ‘restoring’ 19th-20th century historic buildings in New Zealand. This thesis argues that current historic buildings in semi-decayed states in fact enable visitors to witness multiple stages in the on-going life of a building. Can the weathered state of New Zealand's heritage buildings be proactively retained and celebrated as witnesses to their history? Can new lateral reinforcing requirements be conceived as active participants in revealing the on-going history of New Zealand's historic buildings?
Highlights from Radio New Zealand National's programmes for the week ending Friday 6th April. This week... we look at the commercial deals some media personalities are making these days, a documentary on the history of New Zealand's psychiatric hospitals, a new social phenomenon - the increasing number of people who choose to live alone, a new book and interesting findings about our national icon the kiwi, With the aid of advanced functional MRI scanners, scientists are getting closer to being able to read your mind, the opening of a public art project by the Christchurch Art Gallery to try and ensure art continues to have a presence in the earthquake hit city.
Provides history, business, community and tourist information. Also includes information relating to the earthquake recovery.
This paper provides a comparison between the strong ground motions observed in the Christchurch central business district in the 4 September 2010 Mw7.1 Darfield, and 22 February 2011 Mw6.3 Christchurch earthquakes with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. Despite Tokyo being located approximately 110km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were strong enough to cause structural damage in Tokyo and also significant liquefaction to loose reclaimed soils in Tokyo bay. Comparisons include the strong motion time histories, response spectra, significant durations and arias intensity. The implications for large earthquakes in New Zealand are also briefly discussed.
Highlights from Radio New Zealand National's programmes for the week ending Friday 7th of September. This week......two years after the BIG Earthquake in Christchurch, and the Pike River Mine Disaster, how did the media respond to those events ... Mummies, Cannibals and Vampires; The History of Corpse medicine from the Renaissance to The Victorians ... a primary school project gets back to growing fruit and vegetables ... a Maori carving from A german prisoner of War camp comes back home ... the human side of Google ... and an affectionate look back at Broadcasts To Schools.
This paper discusses the seismic performance of the standard RC office building in Christchurch that is given as a structural design example in NZS3101, the concrete structures seismic standard in New Zealand. Firstly the push-over analysis was carried out to evaluate the lateral load carrying capacity of the RC building and then to compare that carrying capacity with the Japanese standard law. The estimated figures showed that the carrying capacity of the New Zealand standard RC office building of NZS3101:2006 was about one third of Japanese demanded carrying capacity. Secondly, time history analysis of the multi-mass system was performed to estimate the maximum response story drift angle using recorded ground motions. Finally, a three-dimensional analysis was carried out to estimate the response of the building to the 22nd February, 2011 Canterbury earthquake. The following outcomes were obtained. 1) The fundamental period of the example RC building is more than twice that of Japanese simplified calculation, 2) The example building’s maximum storey drift angle reached 2.5% under the recorded ground motions. The main purpose of this work is to provide background information of seismic design practice for the reconstruction of Christchurch.
The structure and geomorphology of active orogens evolves on time scales ranging from a single earthquake to millions of years of tectonic deformation. Analysis of crustal deformation using new and established remote sensing techniques, and integration of these data with field mapping, geochronology and the sedimentary record, create new opportunities to understand orogenic evolution over these timescales. Timor Leste (East Timor) lies on the northern collisional boundary between continental crust from the Australian Plate and the Banda volcanic arc. GPS studies have indicated that the island of Timor is actively shortening. Field mapping and fault kinematic analysis of an emergent Pliocene marine sequence identifies gentle folding, overprinted by a predominance of NW-SE oriented dextral-normal faults and NE-SW oriented sinistral-normal faults that collectively bound large (5-20km2) bedrock massifs throughout the island. These fault systems intersect at non-Andersonian conjugate angles of approximately 120° and accommodate an estimated 20 km of orogen-parallel extension. Folding of Pliocene rocks in Timor may represent an early episode of contraction but the overall pattern of deformation is one of lateral crustal extrusion sub-parallel to the Banda Arc. Stratigraphic relationships suggest that extrusion began prior to 5.5 Ma, during and after initial uplift of the orogen. Sedimentological, geochemical and Nd isotope data indicate that the island of Timor was emergent and shedding terrigenous sediment into carbonate basins prior to 4.5 Ma. Synorogenic tectonic and sedimentary phases initiated almost synchronously across much of Timor Leste and <2 Myr before similar events in West Timor. An increase in plate coupling along this obliquely converging boundary, due to subduction of an outlying continental plateau at the Banda Trench, is proposed as a mechanism for uplift that accounts for orogen-parallel extension and early uplift of Timor Leste. Rapid bathymetric changes around Timor are likely to have played an important role in evolution of the Indonesian Seaway. The 2010 Mw 7.1 Darfield (Canterbury) earthquake in New Zealand was complex, involving multiple faults with strike-slip, reverse and normal displacements. Multi-temporal cadastral surveying and airborne light detection and ranging (LiDAR) surveys allowed surface deformation at the junction of three faults to be analyzed in this study in unprecedented detail. A nested, localized restraining stepover with contractional bulging was identified in an area with the overall fault structure of a releasing bend, highlighting the surface complexities that may develop in fault interaction zones during a single earthquake sequence. The earthquake also caused river avulsion and flooding in this area. Geomorphic investigations of these rivers prior to the earthquake identify plausible precursory patterns, including channel migration and narrowing. Comparison of the pre and post-earthquake geomorphology of the fault rupture also suggests that a subtle scarp or groove was present along much of the trace prior to the Darfield earthquake. Hydrogeology and well logs support a hypothesis of extended slip history and suggests that that the Selwyn River fan may be infilling a graben that has accumulated late Quaternary vertical slip of <30 m. Investigating fault behavior, geomorphic and sedimentary responses over a multitude of time-scales and at different study sites provides insights into fault interactions and orogenesis during single earthquakes and over millions of years of plate boundary deformation.
On the second day of teaching for 2011, the University of Canterbury (UC) faced the most significant crisis of its 138-year history. After being shaken severely by a magnitude 7.1 earthquake on 4 September 2010, UC felt it was well along the pathway to getting back to ‘normal’. That all changed at 12:51pm on 22 February 2011, when Christchurch city was hit by an even more devastating event. A magnitude 6.3 (Modified Mercalli intensity ten – MM X) earthquake, just 13km south-east of the Christchurch city centre, caused vertical peak ground accelerations amongst the highest ever recorded in an urban environment, in some places more than twice the acceleration due to gravity. The earthquake caused immediate evacuation of the UC campus and resulted in significant damage to many buildings. Thankfully there were no serious injuries or fatalities on campus, but 185 people died in the city and many more suffered serious injuries. At the time of writing, eighteen months after the first earthquake in September, Christchurch is still experiencing regular earthquakes. Seismologists warn that the region may experience heightened seismicity for a decade or more. While writing this report we have talked with many different people from across the University. People’s experiences are different and we have not managed to talk with everyone, but we hope that by drawing together many different perspectives from across the campus that this report will serve two purposes; to retain our institutional memory of what we have learnt over the past eighteen months, and also to share our learnings with other organisations in New Zealand and around the world who, we hope, will benefit from learning about our experience.
For the people of Christchurch and its wider environs of Canterbury in New Zealand, the 4th of September 2010 earthquake and the subsequent aftershocks were daunting. To then experience a more deadly earthquake five months later on the 22nd of February 2011 was, for the majority, overwhelming. A total of 185 people were killed and the earthquake and continuing aftershocks caused widespread damage to properties, especially in the central city and eastern suburbs. A growing body of literature consistently documents the negative impact of experiencing natural disasters on existing psychological disorders. As well, several studies have identified positive coping strategies which can be used in response to adversities, including reliance on spiritual and cultural beliefs as well as developing resilience and social support. The lifetime prevalence of severe mental health disorders such as posttraumatic stress disorder (PTSD) occurring as a result of experiencing natural disasters in the general population is low. However, members of refugee communities who were among those affected by these earthquakes, as well as having a past history of experiencing traumatic events, were likely to have an increased vulnerability. The current study was undertaken to investigate the relevance to Canterbury refugee communities of the recent Canterbury Earthquake Recovery Authority (CERA) draft recovery strategy for Christchurch post-earthquakes. This was accomplished by interviewing key informants who worked closely with refugee communities. These participants were drawn from different agencies in Christchurch including Refugee Resettlement Services, the Canterbury Refugee Council, CERA, and health promotion and primary healthcare organisations, in order to obtain the views of people who have comprehensive knowledge of refugee communities as well as expertise in local mainstream services. The findings from the semi-structured interviews were analysed using qualitative thematic analysis to identify common themes raised by the participants. The key informants described CERA’s draft recovery strategy as a significant document which highlighted the key aspects of recovery post disaster. Many key informants identified concerns regarding the practicality of the draft recovery strategy. For the refugee communities, some of those concerns included the short consultation period for the implementation phase of the draft recovery strategy, and issues surrounding communication and collaboration between refugee agencies involved in the recovery. This study draws attention to the importance of communication and collaboration during recovery, especially in the social reconstruction phase following a disaster, for all citizens but most especially for refugee communities.
In the period between September 2010 and December 2011, Christchurch (New Zealand) and its surroundings were hit by a series of strong earthquakes including six significant events, all generated by local faults in proximity to the city: 4 September 2010 (Mw=7.1), 22 February 2011 (Mw=6.2), 13 June 2011 (Mw=5.3 and Mw=6.0) and 23 December 2011 (M=5.8 and (M=5.9) earthquakes. As shown in Figure 1, the causative faults of the earthquakes were very close to or within the city boundaries thus generating very strong ground motions and causing tremendous damage throughout the city. Christchurch is shown as a lighter colour area, and its Central Business District (CBD) is marked with a white square area in the figure. Note that the sequence of earthquakes started to the west of the city and then propagated to the south, south-east and east of the city through a set of separate but apparently interacting faults. Because of their strength and proximity to the city, the earthquakes caused tremendous physical damage and impacts on the people, natural and built environments of Christchurch. The 22 February 2011 earthquake was particularly devastating. The ground motions generated by this earthquake were intense and in many parts of Christchurch substantially above the ground motions used to design the buildings in Christchurch. The earthquake caused 182 fatalities, collapse of two multi-storey reinforced concrete buildings, collapse or partial collapse of many unreinforced masonry structures including the historic Christchurch Cathedral. The Central Business District (CBD) of Christchurch, which is the central heart of the city just east of Hagley Park, was practically lost with majority of its 3,000 buildings being damaged beyond repair. Widespread liquefaction in the suburbs of Christchurch, as well as rock falls and slope/cliff instabilities in the Port Hills affected tens of thousands of residential buildings and properties, and shattered the lifelines and infrastructure over approximately one third of the city area. The total economic loss caused by the 2010-2011 Christchurch earthquakes is currently estimated to be in the range between 25 and 30 billion NZ dollars (or 15% to 18% of New Zealand’s GDP). After each major earthquake, comprehensive field investigations and inspections were conducted to document the liquefaction-induced land damage, lateral spreading displacements and their impacts on buildings and infrastructure. In addition, the ground motions produced by the earthquakes were recorded by approximately 15 strong motion stations within (close to) the city boundaries providing and impressive wealth of data, records and observations of the performance of ground and various types of structures during this unusual sequence of strong local earthquakes affecting a city. This paper discusses the liquefaction in residential areas and focuses on its impacts on dwellings (residential houses) and potable water system in the Christchurch suburbs. The ground conditions of Christchurch including the depositional history of soils, their composition, age and groundwater regime are first discussed. Detailed liquefaction maps illustrating the extent and severity of liquefaction across Christchurch triggered by the sequence of earthquakes including multiple episodes of severe re-liquefaction are next presented. Characteristic liquefaction-induced damage to residential houses is then described focussing on the performance of typical house foundations in areas affected by liquefaction. Liquefaction impacts on the potable water system of Christchurch is also briefly summarized including correlation between the damage to the system, liquefaction severity, and the performance of different pipe materials. Finally, the characteristics of Christchurch liquefaction and its impacts on built environment are discussed in relation to the liquefaction-induced damage in Japan during the 11 March 2011 Great East Japan Earthquake.