Search

found 23 results

Images, UC QuakeStudies

St Elmo Courts, a NZHPT heritage building on the corner of Hereford and Montreal Streets. The building was severely damaged during the 4 September earthquake, with diagonal cracking between the windows. Scaffolding has been placed around the bottom of the building.

Images, UC QuakeStudies

A photograph of a man standing inside the cordon fence which has been placed around a building on Cashel Street. Road cones have also been placed around the building and the word "Danger" has been spray-painted on the footpath in front. Fallen masonry from the building lies on the footpath in front.

Images, UC QuakeStudies

A photograph of Cranmer Courts on the corner of Kilmore and Montreal Streets. Pieces of masonry and chimneys have been removed from the building and placed on the ground in front. Wire fencing and road cones have been placed around the building to create a cordon.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Cranmer Courts on the corner of Montreal and Kilmore Streets. Two chimneys have been removed from the building and placed on the footpath in front. Various pieces of fallen masonry can also be seen on the footpath. Wire fencing and road cones have been placed around the building as a cordon.

Images, UC QuakeStudies

Damage to the Repertory Theatre building. Part of the facade has collapsed onto the awning below, and bricks and masonry have spilled across the street. The building is cordoned off with road cones and police tape.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. Ascot TV. This has relocated further south on Colombo Street. Apparently their building on Cranford Street was also severely damaged. Note: these photos were taken on a cellphone; mind the qu...

Research papers, The University of Auckland Library

The 2010 Darfield earthquake is the largest earthquake on record to have occurred within 40 km of a major city and not cause any fatalities. In this paper the authors have reflected on their experiences in Christchurch following the earthquake with a view to what worked, what didn’t, and what lessons can be learned from this for the benefit of Australian earthquake preparedness. Owing to the fact that most of the observed building damage occurred in Unreinforced Masonry (URM) construction, this paper focuses in particular on the authors’ experience conducting rapid building damage assessment during the first 72 hours following the earthquake and more detailed examination of the performance of unreinforced masonry buildings with and without seismic retrofit interventions.

Images, UC QuakeStudies

Damaged buildings on Manchester Street, seen from the Tuam Street intersection. Police emergency tape cordons off the street. The photographer comments, "This was taken shortly after the 4th September earthquake. Police allowed us free access past the cordon and simply advised us to watch out for falling masonry. The access situation was much different after the February aftershock".

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of The New Zealand Army, along with Police, minding the cordons. This was beside The Press building, and behind the Christchurch Cathedral. Note: these photos were taken on a cellphone; mind the quality.

Research papers, University of Canterbury Library

On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Unreinforced masonry buildings also suffered extensive damage throughout the region. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. This paper summarizes the observations and preliminary findings from this early reconnaissance work.

Research papers, University of Canterbury Library

On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage occurred to unreinforced masonry buildings throughout the region during the mainshock and subsequent large aftershocks. Particularly extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, a geotechnical reconnaissance was conducted over a period of six days (10–15 September 2010) by a team of geotechnical/earthquake engineers and geologists from New Zealand and USA (GEER team: Geo-engineering Extreme Event Reconnaissance). JGS (Japanese Geotechnical Society) members from Japan also participated in the reconnaissance team from 13 to 15 September 2010. The NZ, GEER and JGS members worked as one team and shared resources, information and logistics in order to conduct thorough and most efficient reconnaissance covering a large area over a very limited time period. This report summarises the key evidence and findings from the reconnaissance.