Search

found 2 results

Research papers, University of Canterbury Library

Detailed studies on the sediment budget may reveal valuable insights into the successive build-up of the Canterbury Plains and their modification by Holocene fluvialaction connected to major braided rivers. Additionally, they bear implications beyond these fluvial aspects. Palaeoseismological studies claim to have detected signals of major Alpine Fault earthquakes in coastal environments along the eastern seaboard of the South Island (McFadgen and Goff, 2005). This requires high connectivity between the lower reaches of major braided rivers and their mountain catchments to generate immediate significant sediment pulses. It would be contradictory to the above mentioned hypothesis though. Obtaining better control on sediment budgets of braided rivers like the Waimakariri River will finally add significant value to multiple scientific and applied topics like regional resource management. An essential first step of sediment budget studies Is to systematically map the geomorphology, conventionally in the field and/or using remote-sensing applications, to localise, genetically identify, and classify landforms or entire toposequences of the area being investigated. In formerly glaciated mountain environments it is also indispensable to obtain all available chronological information supporting subsequent investigations.

Research papers, University of Canterbury Library

Natural hazard reviews reveal increases in disaster impacts nowhere more pronounced than in coastal settlements. Despite efforts to enhance hazard resilience, the common trend remains to keep producing disaster prone places. This paper explicitly explores hazard versus multi-hazard concepts to illustrate how different conceptualizations can enhance or reduce settlement resilience. Understandings gained were combined with onthe-ground lessons from earthquake and flooding experiences to develop of a novel ‘first cut’ approach for analyzing key multi-hazard interconnections, and to evaluate resilience enhancing opportunities. Traditional disaster resilience efforts often consider different hazard types discretely. However, recent events in Christchurch, a New Zealand city that is part of the 100 Resilient Cities network, highlight the need to analyze the interrelated nature of different hazards, especially for enhancing lifelines system resilience. Our overview of the Christchurch case study demonstrates that seismic, hydrological, shallow-earth, and coastal hazards can be fundamentally interconnected, with catastrophic results where such interconnections go unrecognized. In response, we have begun to develop a simple approach for use by different stakeholders to support resilience planning, pre and post disaster, by: drawing attention to natural and built environment multi-hazard links in general; illustrating a ‘first cut’ tool for uncovering earthquake-flooding multi-hazard links in particular; and providing a basis for reviewing resilience strategy effectiveness in multi-hazard prone environments. This framework has particular application to tectonically active areas exposed to climate-change issues.