Search

found 29 results

Research papers, University of Canterbury Library

Very little research exists on total house seismic performance. This testing programme provides stiffness and response data for five houses of varying ages including contributions of non-structural elements. These light timber framed houses in Christchurch, New Zealand had minor earthquake damage from the 2011 earthquakes and were lateral load tested on site to determine their strength and stiffness, and preliminary damage thresholds. Dynamic characteristics were also investigated. Various loading schemes were utilised including quasi-static loading above the foundation, unidirectional loading through the floor diaphragm, cyclic quasi-static loading and snapback tests. Dynamic analysis on two houses provided the seismic safety levels of post-quake houses with respect to local hazard levels. Compared with New Zealand Building Standards all the tested houses had an excess of strength, damage is a significant consideration in earthquake resilience and was observed in all of the houses. A full size house laboratory test is proposed.

Research papers, University of Canterbury Library

Recent severe earthquakes, such as the 2010-2011 Christchurch earthquake series, have put emphasis on building resilience all over the world. To achieve such resilience, procedures for low damage seismic design have been developed to satisfy both life safety requirements and the need to minimize undesirable economic effects of required building repair or structural member replacement following a major earthquake. Seismic resisting systems following this concept are expected to withstand severe earthquakes without requiring major post-earthquake repairs, using isolating mechanisms or sacrificial systems that either do not need repair or are readily repairable or replaceable. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs) and symmetric friction connections (SFCs) in braces of the braced frames. A 9 m tall, configurable three-storey steel framed composite floor building incorporating frictionbased connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. The structural systems are configurable, allowing different moment and braced frame structural systems tested in two horizontal directions. The structure is designed and detailed to undergo, at worst, minor damage under a planned series of severe earthquakes.

Research papers, The University of Auckland Library

It is well known that buildings constructed using unreinforced masonry (URM) are susceptible to damage from earthquake induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent New Zealand example of destructive earthquakes, which have drawn people's attention to the inherent seismic weaknesses of URM buildings and anchored masonry veneer systems in New Zealand. A brief review of the data collected following the 2010 Darfield earthquake and more comprehensive documentation of data that was collected following the 2011 Christchurch earthquake is presented, along with the findings from subsequent data interrogation. Large stocks of earthquake prone vintage URM buildings that remain in New Zealand and in other seismically active parts of the world result in the need for minimally invasive and cost effective seismic retrofit techniques. The principal objective of the doctoral research reported herein was to investigate the applicability of near surface mounted (NSM) carbon fibre reinforced polymer (CFRP) strips as a seismic improvement technique. A comprehensive experimental program consisting of 53 pull tests is presented and is used to assess the accuracy of existing FRP-to-masonry bond models, with a modified model being proposed. The strength characteristics of vintage clay brick URM wall panels from two existing URM buildings was established and used as a benchmark when manufacturing replica clay brick test assemblages. The applicability of using NSM CFRP strips as a retrofitting technique for improving the shear strength and the ductility capacity of multi-leaf URM walls constructed using solid clay brick masonry is investigated by varying CFRP reinforcement ratios. Lastly, an experimental program was undertaken to validate the proposed design methodology for improving the strength capacity of URM walls. The program involved testing full-scale walls in a laboratory setting and testing full-scale walls in-situ in existing vintage URM buildings. Experimental test results illustrated that the NSM CFRP technique is an effective method to seismically strengthen URM buildings.

Research papers, University of Canterbury Library

Major earthquakes, such as the Canterbury and Kaikoura events recorded in New Zealand in 2010 and 2016 respectively, highlighted that floor systems can be heavily damaged. At a reduced or full scale, quasi-static experimental tests on structural sub-assemblies can help to establish the seismic performance of structural systems. However, the experimental performance obtained with such tests is likely to be dependent on the drift protocol adopted. This paper provides an overview of the drift protocols which have been assumed in previous relevant experimental activities, with emphasis on those adopted for testing floor systems. The paper also describes the procedure used to define the loading protocol applied in the testing of a large precast concrete floor diaphragm as part of the Recast floor project at the University of Canterbury. Finally, major limits of current loading protocols, and areas of future research, are identified.

Research papers, University of Canterbury Library

Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building nonskeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.

Research papers, The University of Auckland Library

A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.

Research papers, University of Canterbury Library

Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building non-skeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.

Research papers, University of Canterbury Library

This paper outlines the deconstruction, redesign and reconstruction of a 2 storey timber building at the University of Canterbury, in Christchurch, New Zealand. The building consists of post tensioned timber frames and walls for lateral and gravity resistance, and timber concrete composite flooring. Originally a test specimen, the structure was subjected to extreme lateral displacements in the University structural testing laboratory. This large scale test of the structural form showed that post tensioned timber can withstand high levels of drift with little to no structural damage in addition to displaying full recentering characteristics with no residual displacements, a significant contributor to post earthquake cost. The building subsequently has been dismantled and reconstructed as offices for the Structural Timber Innovation Company (STIC). In doing this over 90% of the materials have been recycled which further enhances the sustainability of this construction system. The paper outlines the necessary steps to convert the structure from a test specimen into a functioning office building with minimal wastage and sufficient seismic resistance. The feasibility of recycling the structural system is examined using the key indicators of cost and time.

Research papers, University of Canterbury Library

This thesis presents the findings from an experimental programme to determine the performance and behaviour of an integrated building incorporating low damage structural and non-structural systems. The systems investigated included post-tensioned rocking concrete frames, articulated floor solutions, low damage claddings and low damage partition systems. As part of a more general aim to increase the resilience of society against earthquake hazards, more emphasis has been given to damage-control design approaches in research. Multiple low-damage earthquake resistant structural and non-structural systems have emerged that are able to withstand high levels of drift or deflections will little or negligible residual. Dry jointed connections, articulated floor solutions, low damage cladding systems and low damage drywall partitions have all been developed separately and successfully tested. In spite of the extensive research effort and the adoption in practice of the low damage systems, work was required to integrate the systems within one building and verify the constructibility, behaviour and performance of the integrated systems. The objectives of this research were to perform dynamic experimental testing of a building which incorporated the low damage systems and acquire data which could be used to dynamically validate numerical models for each of the systems. A three phase experimental programme was devised and performed to dynamically test a half-scale two storey reinforced concrete building on the University of Canterbury shaking table. The three phases of the programme investigated: The structural system only. The rocking connections were tested as Post-Tensioned only connections and Hybrid connections (including dissipators). Two different articulated floor connections were also investigated. Non-structural systems. The Hybrid building was tested with each non-structural system separately; including low damage claddings, low damage partitions and traditional partitions. The Complete building was tested with Hybrid connections, low damage claddings and low damage partitions all integrated within the test specimen. The building was designed based on a full scale prototype building following the direct displacement based design to reach a peak inter-storey drift of 1.6% in a 1/500 year ground motion for a Wellington site. For each test set up, the test specimen was subjected to a ground motion sequence of 39 single direction ground motions. Through the sequence, both the local and global behaviours of the building and integrated systems were recorded in real time. The test specimen was subjected to over 400 ground motions throughout the testing programme. It sustained no significant damage that required reparations other than crumbling of the grout pads. The average peak inter-storey drifts of the buildings were lower than the design value of 1.6%. The low damage non-structural elements were undamaged in the ground motion sequence. The data acquired from each of the phases was used to successfully validate numerical models for each of the low damage systems included in the research.

Research papers, The University of Auckland Library

An UnReinforced clay brick Masonry (URM) chimney is composed of a cantilever URM appendage above a roofline and is considered one of the most earthquake prone non-structural compo¬nents within vintage URM and timber-framed buildings. Observations from past earthquakes including the 1992 Big Bear City earthquake, 1994 Northridge earthquake, 2001 Nisqually earthquake, 2010/2011 Canterbury earthquakes, 2012 Northern Italy earthquakes, and 2014 South Napa earthquake served repeatedly as a reminder of the hazard induced by URM chimneys. The observed failure types included several cases where the adopted retrofit techniques were not adequate to effectively secure chimneys dur¬ing the earthquake. Data collected during the 2010/2011 post-earthquake building assessments in Christchurch and insur¬ance claims are reported herein. Five full-scale solid clay brick URM chimneys which replicated the most encountered geometrical and construction characteristics were subjected to shake table testing. Two chim¬ney samples were representative of the as-built conditions, while three samples were retrofitted using two different configurations of Near-Surface-Mounted (NSM) Carbon-Fibre-Reinforced-Polymer (CFRP) strips and post-tensioning techniques. The adopted securing techniques allowed an increase in seismic acceleration capacity of more than five times for chimneys constructed with ultra-weak mortar and more than twice for chimneys built with weak mortar. http://www.16ibmac.com/

Research papers, University of Canterbury Library

Recent severe earthquakes, such as Christchurch earthquake series, worldwide have put emphasis on building resilience. In resilient systems, not only life is protected, but also undesirable economic effects of building repair or replacement are minimized following a severe earthquake. Friction connections are one way of providing structure resilience. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs), and the symmetric friction connections (SFCs) in braces of the braced frames. Experimental and numerical studies on components have been conducted internationally. However, actual building performance depends on the many interactions, occurring within a whole building system, which may be difficult to determine accurately by numerical modelling or testing of structural components alone. Dynamic inelastic testing of a full-scale multi-storey composite floor building with full range of non-structural elements (NSEs) has not yet been performed, so it is unclear if surprises are likely to occur in such a system. A 9 m tall three-storey configurable steel framed composite floor building incorporating friction-based connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. Beams and columns are designed to remain elastic during an earthquake event, with all non-linear behaviour occurring through stable sliding frictional behaviour, dissipating energy by SHJAFCs used in MRFs and SFCs in braced frames, with and without Belleville springs. Structural systems are configurable, allowing different moment and braced frame structural systems to be tested in two horizontal directions. In some cases, these systems interact with rocking frame or rocking column system in orthogonal directions subjected to unidirectional and bidirectional horizontal shaking. The structure is designed and detailed to undergo, at worst, minor damage under series of severe earthquakes. NSEs applied include precast-concrete panels, glass curtain walling, internal partitions, suspended ceilings, fire sprinkler piping as well as some other common contents. Some of the key design considerations are presented and discussed herein

Research papers, University of Canterbury Library

Beam-column joints are addressed in the context of current design procedures and performance criteria for reinforced concrete ductile frames subjected to large earthquake motions. Attention is drawn to the significant differences between the pertinent requirements of concrete design codes of New Zealand and the United States for such joints. The difference between codes stimulated researchers and structural engineers of the United States, New Zealand, Japan and China to undertake an international collaborative research project. The major investigators of the project selected issues and set guidelines for co-ordinated testing of joint specimens designed according to the codes of the countries. The tests conducted at the University of Canterbury, New Zealand, are reported. Three full-scale beam-column-slab joint assemblies were designed according to existing code requirements of NZS 3101:1982, representing an interior joint of a one-way frame, an interior joint of a two-way frame, and an exterior joint of a two-way frame. Quasistatic cyclic loading simulating severe earthquake actions was applied. The overall performance of each test assembly was found to be satisfactory in terms of stiffness, strength and ductility. The joint and column remained essentially undamaged while plastic hinges formed in the beams. The weak beam-strong column behaviour sought in the design, desirable in tall ductile frames designed for earthquake resistance, was therefore achieved. Using the laws of statics and test observations, the action and flow of forces from the slabs, beams and column to the joint cores are explored. The effects of bond performance and the seismic shear resistance of the joints, based on some postulated mechanisms, are examined. Implications of the test results on code specifications are discussed and design recomendations are made.

Research papers, University of Canterbury Library

Drywalls are the typical infill or partitions used in new structures. They are usually located within structural frames and/or between upper and lower floor slabs in buildings. Due to the materials used in their construction, unlike masonry blocks, they can be considered as light non-structural infill/partition walls. These types of walls are especially popular in New Zealand and the USA. In spite of their popularity, little is known about their in-plane cyclic behaviour when infilled within a structural frame. The cause of this lack of knowledge can be attributed to the typical assumption that they are weak non-structural elements and are not expected to interact with the surrounding structural system significantly. However, recent earthquakes have repeatedly shown that drywalls interact with the structure and suffer severe damage at very low drift levels. In this paper, experimental test results of two typical drywall types (steel and timber framed) are reported in order to gather further information on; i) their reverse cyclic behaviour, ii) inter-storey drift levels at which they suffer different levels of damage, iii) the level of interaction with the surrounding structural frame system. The drywall specimens were tested using quasi-static reverse cyclic testing protocols within a full scale precast RC frame at the Structures Laboratory of the University of Canterbury.

Research papers, University of Canterbury Library

Despite their good performance in terms of their design objectives, many modern code-prescriptive buildings built in Christchurch, New Zealand had to be razed after the 2010-2011 Canterbury earthquakes because repairs were deemed too costly due to widespread sacrificial damage. Clearly a more effective design paradigm is needed to create more resilient structures. Rocking, post-tensioned connections with supplemental energy dissipation can contribute to a damage avoidance designs (DAD). However, few have achieved all three key design objectives of damage-resistant rocking, inherent recentering ability, and repeatable, damage-free energy dissipation for all cycles, which together offer a response which is independent of loading history. Results of experimental tests are presented for a near full-scale rocking beam-column sub-assemblage. A matrix of test results is presented for the system under varying levels of posttensioning, with and without supplemental dampers. Importantly, this parametric study delineates each contribution to response. Practical limitations on posttensioning are identified: a minimum to ensure static structural re-centering, and a maximum to ensure deformability without threadbar yielding. Good agreement between a mechanistic model and experimental results over all parameters and inputs indicates the model is robust and accurate for design. The overall results indicate that it is possible to create a DAD connection where the non-linear force-deformation response is loading history independent and repeatable over numerous loading cycles, without damage, creating the opportunity for the design and implementation of highly resilient structures.

Research papers, The University of Auckland Library

A non-destructive hardness testing method has been developed to investigate the amount of plastic strain demand in steel elements subjected to cyclic loading. The focus of this research is on application to the active links of eccentrically braced frames (EBFs), which are a commonly used seismic-resisting system in modern steel framed buildings. The 2010/2011 Christchurch earthquake series, especially the very intense February 22 shaking, which was the first earthquake worldwide to push complete EBF systems fully into their inelastic state, generating a moderate to high level of plastic strain in EBF active links, for a range of buildings from 3 to 23 storeys in height. This raised two important questions: 1) what was the extent of plastic deformation in active links; and 2) what effect does that have to post-earthquake steel properties? This project comprised determining a robust relationship between hardness and plastic strain in order to be able to answer the first question and provide the necessary input into answering the second question. A non-destructive Leeb (portable) hardness tester (model TH170) has been used to measure the hardness, in order to determine the plastic strain, in hot rolled steel universal sections and steel plates. A bench top Rockwell B was used to compare and validated the hardness measured by the portable hardness tester. Hardness was measured from monotonically strained tensile test specimens to identify the relationship between hardness and plastic strain demand. Test results confirmed a good relationship between hardness and the amount of monotonically induced plastic strain. Surface roughness was identified as an important parameter in obtaining reliable hardness readings from a portable hardness reader. A proper surface preparation method was established by using three different cleaning methods, finished with hand sanding to achieve surface roughness coefficients sufficiently low not to distort the results. This work showed that a test surface roughness (Ra) is not more than 1.6 micron meter (μm) is required for accurate readings from the TH170 tester. A case study on an earthquake affected building was carried out to identify the relationship between hardness and amount of plastic strain demand in cyclically deformed active links. Hardness was carried out from active links shown visually to have been the most affected during one of the major earthquake events. Onsite hardness test results were then compared with laboratory hardness test results. A good relationship between hardness from onsite and laboratory was observed between the test methods; Rockwell B bench top and portable Leeb tester TH170. Manufacturing induced plastic strain in the top and bottom of the webs of hot rolled sections were discovered from this research, an important result which explains why visual effects of earthquake induced active link yielding (eg cracked or flaking paint) was typically more prevalent over the middle half depth of the active link. The extent of this was quantified. It was also evident that the hardness readings from the portable hardness tester are influenced by geometry, mass effects and rigidity of the links. The final experimental stage was application of the method to full scale cyclic inelastic tested nominally identical active links subjected to loading regimes comprising constant and variable plastic strain demands. The links were cyclically loaded to achieve different plastic strain level. A novel Digital Image Correlation (DIC) technique was incorporated during the tests of this scale, to confirm the level of plastic strain achieved. Tensile test specimens were water jet cut from cyclically deformed webs to analyse the level of plastic strain. Test results show clear evidence that cyclically deformed structural steel elements show good correlation between hardness and the amount of plastic strain demand. DIC method was found to be reliable and accurate to check the level of plastic strain within cyclically deformed structural steel elements.

Research papers, University of Canterbury Library

Objective: The nature of disaster research makes it difficult to adequately measure the impact that significant events have on a population. Large, representative samples are required, ideally with comparable data collected before the event. When Christchurch, New Zealand, was struck by multiple, devastating earthquakes, there presented an opportunity to investigate the effects of dose-related quakes (none, one, two or three over a 9-month period) on the cognition of Canterbury’s elderly population through the New Zealand Brain Research Institute’s (NZBRI’s) cognitive screening study. The related effects of having a concomitant medical condition, sex, age and estimated- full scale IQ (Est-FSIQ) on cognition were also investigated. Method: 609 participants were tested on various neuropsychological tests and a self-rated dementia scale in a one hour interview at the NZBRI. Four groups were established, based on the number of major earthquakes experienced at the time of testing: “EQ-dose: None” (N = 51) had experienced no quakes; “EQ-dose: One” (N = 193) had experienced the initial quake in September 2010; “EQ-dose: Two” (N = 82) also experienced the most devastating February 2011 quake; and “EQ-dose: Three” (N = 265) also the June 2011 quake at testing. Results: Two neuropsychological variables of Trail A and the AD8 were impacted by an EQ-dose effect, while having a medical condition was associated with poorer function on the MoCA, Rey Copy and Recall, Trail A, and AD8. Having a major medical condition led to worse performance on the Rey Copy and Recall following the major February earthquake. Males performed significantly better on Trail A and Rey Planning, while females better on the MoCA. Older participants (>73) had significantly lower scores on the MoCA than younger participants (<74), while those with a higher Est-FSIQ (>111) had better scores on the MoCA and Rey Recall than participants with a lower Est-FSIQ. Finally, predicted variable analysis (based on calculated, sample-specific Z-scores) failed to find a significant earthquake effect when variables of age, sex and Est-FSIQ were controlled for, while there was a significant effect of medical condition on each measure. Conclusion: The current thesis provides evidence suggesting resilience amongst Canterbury’s elderly population in the face of the sequence of significant quakes that struck the region over a year from September 2010. By contrast, having a major medical condition was a ‘more significant life event’ in terms of impact on cognition in this group.

Research papers, The University of Auckland Library

Industrial steel storage pallet racking systems are used extensively worldwide to store goods. Forty percent of all goods are stored on storage racks at some time during their manufactureto- consumption life. In 2017, goods worth USD 16.5 billion were carried on cold-formed steel racking systems in seismically active regions worldwide. Historically, these racks are particularly vulnerable to collapse in severe earthquakes. In the 2010/2011 Christchurch earthquakes, around NZD 100 million of pallet racking stored goods were lost, with much greater associated economic losses due to disruptions to the national supply chain. A novel component, the friction slipper baseplate, has been designed and developed to very significantly improve the seismic performance of a selective pallet racking system in both the cross-aisle and the down-aisle directions. This thesis documents the whole progress of the development of the friction slipper baseplate from the design concept development to experimental verification and incorporation into the seismic design procedure for selective pallet racking systems. The test results on the component joint tests, full-scale pull-over and snap-back tests and fullscale shaking table tests of a steel storage racking system are presented. The extensive experimental observations show that the friction slipper baseplate exhibits the best seismic performance in both the cross-aisle and the down-aisle directions compared with all the other base-connections tested. It protects the rack frame and concrete floor from damage, reduces the risk of overturning in the cross-aisle direction, and minimises the damage at beam-end connectors in the down-aisle direction, without sustaining damage to the connection itself. Moreover, this high level of seismic performance can be delivered by a simple and costeffective baseplate with almost no additional cost. The significantly reduced internal force and frame acceleration response enable the more cost-effective and safer design of the pallet racking system with minimal extra cost for the baseplate. The friction slipper baseplate also provides enhanced protection to the column base from operational impact damage compared with other seismic resisting and standard baseplates.

Research papers, University of Canterbury Library

Field surveys and experimental studies have shown that light steel or timber framed plasterboard partition walls are particularly vulnerable to earthquake damage prompting the overarching objective of this research, which is to further the development of low damage seismic systems for non-structural partition walls in order to facilitate their adoption by industry to assist with reducing the losses associated with the maintenance and repair cost of buildings across their design life. In particular, this study focused on the behaviour of steel-framed partition walls systems with novel detailing that aim to be “low-damage” designed according to common practice for walls used in commercial and institutional buildings in New Zealand. This objective was investigated by (1) investigating the performance of a flexible track system proposed by researchers and industry by experimental testing of full-scale specimens; (2) investigating the performance of the seismic gap partition wall systems proposed in a number of studies, further developed in this study with input from industry, by experimental testing of full-scale specimens; and (3) investigating the potential implications of using these systems compared with traditionally detailed partition wall systems within multi-storey buildings using the Performance Based Earthquake Engineering loss assessment methodology. Three full-scale testing frames were designed in order to replicate, under controlled laboratory conditions, the effects of seismic shaking on partition walls within multi-storey buildings by the application of quasi-static uni-directional cyclic loading imposing an inter-storey drift. The typical configuration for test specimens was selected to be a unique “y-shape”, including one angled return wall, with typical dimensions of approximately 2400 mm along the main wall and 600 mm along (approximately) the returns walls with a height of 2405 mm from floor to ceiling. The specimens were aligned within test frames at an oblique angle to the direction of loading in order to investigate bi- directional effects. Three wall specimens with flexible track detailing, two identical plane specimens and the third including a doorway, were tested. The detailing involved removing top track anchors within the proximity of wall intersections, thus allowing the tracks to ‘bow’ out at these locations. Although the top track anchors were specified to be removed the proximity of wall intersections, a construction error was made whereby a single top track slab to concrete anchor was left in at the three-way wall junction. Despite this error, the experimental testing was deemed worthwhile since such errors will also occur in practice and because the behaviour of the wall can be examined with this fixing in mind. The specimens also included an acoustic/fire sealant at the top lining to floor boundary. In addition to providing drift capacities, the force-displacement behaviour is also reported, the dissipated energy was computed, and the parameters of the Wayne-Stewart hysteretic model were fitted to the results. The specimen with the door opening behaved significantly different to the plane specimens: damage to the doorway specimen began as cracking of the wallboard propagating from the corners of the doorway following which the L- and Y- shaped junctions behaved independently, whereas damage to the plane specimens began as cracking of the wallboard at the top of the L-junction and wall system deformed as a single unit. The results suggest that bi-directional behaviour is important even if its impact cannot be directly quantified by the experiments conducted. Damage to sealant implies that the bond between plasterboard and sealant is important for its seismic performance. Careful quality control is advised as defects in the bond may significantly impact its ability to withstand seismic movement. Two specimens with seismic gap detailing were tested: a steel stud specimen and a timber stud specimen. Observed drift capacities were significantly greater than traditional plasterboard partition systems. Equations were used to predict the drift at which damage state 1 (DS1) and damage state 2 (DS2) would initiate. The equation used to estimate the drift at the onset of DS1 accurately predicted the onset of plaster cracking but overestimated the drift at which the gap filling material was damaged. The equation used to predict the onset of DS2 provided a lower bound for both specimens and also when used to predict results of previous experimental tests on seismic gap systems. The gap-filling material reduced the drift at the onset of DS1, however, it had a beneficial effect on the re-centring behaviour of the linings. Out-of-plane displacements and return wall configuration did not appear to significantly impact the onset of plaster cracking in the specimens. A loss assessment according to the PBEE methodology was conducted on four steel MRF case study buildings: (1) a 4-storey building designed for the Christchurch region, (2) a 4-storey building designed for the Wellington region, (3) a 12-storey building designed for the Christchurch region, and (4) a 12- storey building designed for the Wellington region. The fragility parameters for a traditional partition system, the flexible track partition system, and the seismic gap steel stud and timber stud partition systems were included within the loss assessment. The order (lowest to highest) of each system in terms of the expected annual losses of each building when incorporating the system was, (1) the seismic gap timber stud system, (2) the seismic gap steel stud system, (3) the traditional/baseline system, and (4) the flexible track system. For the seismic gap timber stud system, which incurred the greatest reduction in expected annual losses for each case study building, the reduction in expected annual losses in comparison to the losses found when using the traditional system ranged from a 5% to a 30% reduction. This reinforces the fact that while there is a benefit to the using low damage partition systems in each building the extent of reduction in expected annual losses is significantly dependent on the particular building design and its location. The flexible track specimens had larger repair costs at small hazard levels compared to the traditional system but smaller repair costs at larger hazard levels. However, the resulting expected annual losses for the flexible track system was higher than the traditional system which reinforces findings from past studies which observed that the greatest contribution to expected annual losses arises from low to moderate intensity shaking seismic events (low hazard levels).

Research papers, University of Canterbury Library

To reduce seismic vulnerability and the economic impact of seismic structural damage, it is important to protect structures using supplemental energy dissipation devices. Several types of supplemental damping systems can limit loads transferred to structures and absorb significant response energy without sacrificial structural damage. Lead extrusion dampers are one type of supplemental energy dissipation devices. A smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, have been employed in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch and San Francisco. HF2V devices have previously been designed using very simple models with limited precision. They are then manufactured, and tested to ensure force capacities match design goals, potentially necessitating reassembly or redesign if there is large error. In particular, devices with a force capacity well above or below a design range can require more testing and redesign, leading to increased economic and time cost. Thus, there is a major need for a modelling methodology to accurately estimate the range of possible device force capacity values in the design phase – upper and lower bounds. Upper and lower bound force capacity estimates are developed from equations in the metal extrusion literature. These equations consider both friction and extrusion forces between the lead and the bulged shaft in HF2V devices. The equations for the lower and upper bounds are strictly functions of device design parameters ensuring easy use in the design phase. Two different sets of estimates are created, leading to estimates for the lower and upper bounds denoted FLB,1, FUB,1, FUB,2, respectively. The models are validated by comparing the bounds with experimental force capacity data from 15 experimental HF2V device tests. All lower bound estimates are below or almost equal to the experimental device forces, and all upper bound estimates are above. Per the derivation, the (FLB,1, FUB,1) pair provide narrower bounds. The (FLB,1, FUB,1) pair also had a mean lower bound gap of -34%, meaning the lower bound was 74% of device force on average, while the mean upper bound gap for FUB,1 was +23%. These are relatively tight bounds, within ~±2 SE of device manufacture, and can be used as a guide to ensure device forces are in range for the actual design use when manufactured. Therefore, they provide a useful design tool.

Research papers, The University of Auckland Library

Following the 2010/2011 Canterbury (New Zealand) earthquakes the seismic design of buildings with precast concrete panels has received significant attention. Although this form of construction generally performed adequately in Christchurch, there were a considerable number of precast concrete panel connection failures. This observation prompted a review of more than 4700 panel details to establish representative details used in both existing and new multi-storey and low rise industrial precast concrete buildings. The detailing and quantity of each reviewed connection type in the sampled data is reported, and advantages and potential deficiencies of each connection type are discussed. Following the Canterbury earthquakes, it was observed that brittle failure had occurred in some grouted metal duct connections used for precast concrete wall panels, resulting in recommendations for more robust detailing of this connection type. A set of experimental tests was subsequently performed to investigate the in-plane seismic behaviour of precast concrete wall panel connections. This testing comprised of seven reversed cyclic in-plane tests of fullscale precast concrete wall panels having wall-to-foundation grouted metal duct connections. Walls with existing connection detailing were found to perform adequately when carrying low axial loads, but performance was found to be less satisfactory as the axial load and wall panel length increased. The use of new recommended detailing was observed to prevent brittle connection response and to improve the robustness of the reinforcement splice. A parametric investigation was conducted using the finite element method to predict the failure mode of metal duct connections. From the results of the parametric study on metal duct connections it was identified that there were three possible failure modes, being reinforcement fracture, concrete spalling without metal duct pull out, and concrete spalling with metal duct pull-out. An alternative simple analytical method was proposed in order to determine the type of connection failure without using a time-consuming finite element method. Grouted sleeves inserts are an alternative connector that is widely used to connect wall panels to the foundations. The two full-scale wall panels were subjected to reversed cyclic in-plane demands until failure of either the connection or the wall panel. Wall panel failure was due to a combination of connection reinforcement pulling-out from the coupler and reinforcement fracture. In addition, non-embedded grouted sleeve tests filled with different quality of grout were conducted by subjecting these coupler assemblages to cyclic and monotonic forces.

Research papers, The University of Auckland Library

The Canterbury earthquake series of 2010/2011 has turned the city of Christchurch into a full scale natural laboratory testing the structural and non-structural response of buildings under moderate to very severe earthquake shaking. The lessons learned from this, which have come at great cost socially and economically, are extremely valuable in increasing our understanding of whole building performance in severe earthquakes. Given current initiatives underway on both sides of the Tasman towards developing joint Australasian steel and composite steel/concrete design and construction standards that would span a very wide range of geological conditions and seismic zones, these lessons are relevant to both countries. This paper focusses on the performance of steel framed buildings in Christchurch city, with greatest emphasis on multi-storey buildings, but also covering single storey steel framed buildings and light steel framed housing. It addresses such issues as the magnitude and structural impact of the earthquake series, importance of good detailing, lack of observed column base hinging, the excellent performance of composite floors and it will briefly cover research underway to quantify some of these effects for use in design.

Research papers, University of Canterbury Library

In most design codes, infill walls are considered as non-structural elements and thus are typically neglected in the design process. The observations made after major earthquakes (Duzce 1999, L’Aquila 2009, Christchurch 2011) have shown that even though infill walls are considered to be non-structural elements, they interact with the structural system during seismic actions. In the case of heavy infill walls (i.e. clay brick infill walls), the whole behaviour of the structure may be affected by this interaction (i.e. local or global structural failures such as soft storey mechanism). In the case of light infill walls (i.e. non-structural drywalls), this may cause significant economical losses. To consider the interaction of the structural system with the ‘non-structural ’infill walls at design stage may not be a practical approach due to the complexity of the infill wall behaviour. Therefore, the purpose of the reported research is to develop innovative technological solutions and design recommendations for low damage non-structural wall systems for seismic actions by making use of alternative approaches. Light (steel/timber framed drywalls) and heavy (unreinforced clay brick) non-structural infill wall systems were studied by following an experimental/numerical research programme. Quasi-static reverse cyclic tests were carried out by utilizing a specially designed full scale reinforced concrete frame, which can be used as a re-usable bare frame. In this frame, two RC beams and two RC columns were connected by two un-bonded post tensioning bars, emulating a jointed ductile frame system (PRESSS technology). Due to the rocking behaviour at the beam-column joint interfaces, this frame was typically a low damage structural solution, with the post-tensioning guaranteeing a linear elastic behaviour. Therefore, this frame could be repeatedly used in all of the tests carried out by changing only the infill walls within this frame. Due to the linear elastic behaviour of this structural bare frame, it was possible to extract the exact behaviour of the infill walls from the global results. In other words, the only parameter that affected the global results was given by the infill walls. For the test specimens, the existing practice of construction (as built) for both light and heavy non-structural walls was implemented. In the light of the observations taken during these tests, modified low damage construction practices were proposed and tested. In total, seven tests were carried out: 1) Bare frame , in order to confirm its linear elastic behaviour. 2) As built steel framed drywall specimen FIF1-STFD (Light) 3) As built timber framed drywall specimen FIF2-TBFD (Light) 4) As built unreinforced clay brick infill wall specimen FIF3-UCBI (Heavy) 5) Low damage steel framed drywall specimen MIF1-STFD (Light) 6) Low damage timber framed drywall specimen MIF2-TBFD (Light) 7) Low damage unreinforced clay brick infill wall specimen MIF5-UCBI (Heavy) The tests of the as built practices showed that both drywalls and unreinforced clay brick infill walls have a low serviceability inter-storey drift limit (0.2-0.3%). Based on the observations, simple modifications and details were proposed for the low damage specimens. The details proved to be working effectively in lowering the damage and increasing the serviceability drift limits. For drywalls, the proposed low damage solutions do not introduce additional cost, material or labour and they are easily applicable in real buildings. For unreinforced clay brick infill walls, a light steel sub-frame system was suggested that divides the infill panel zone into smaller individual panels, which requires additional labour and some cost. However, both systems can be engineered for seismic actions and their behaviour can be controlled by implementing the proposed details. The performance of the developed details were also confirmed by the numerical case study analyses carried out using Ruaumoko 2D on a reinforced concrete building model designed according to the NZ codes/standards. The results have confirmed that the implementation of the proposed low damage solutions is expected to significantly reduce the non-structural infill wall damage throughout a building.

Research papers, University of Canterbury Library

Supplemental energy dissipation devices are increasingly used to protect structures, limit loads transferred to structural elements and absorbing significant response energy without sacrificial structural damage. Lead extrusion dampers are supplemental energy dissipation devices, where recent development of smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, has seen deployment in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch, NZ and San Francisco, USA. HF2V devices have previously been designed using limited precision models, so there is variation in force prediction capability. Further, while the overall resistive force is predicted, the knowledge of the relative contributions of the different internal reaction mechanisms to these overall resistive forces is lacking, limiting insight and predictive accuracy in device design. There is thus a major need for detailed design models to better understand force generation, and to aid precision device design. These outcomes would speed the overall design and implementation process for uptake and use, reducing the need for iterative experimental testing. Design parameters from 17 experimental HF2V device tests are used to create finite element models using ABAQUS. The analysis is run using ABAQUS Explicit, in multiple step times of 1 second with automatic increments, to balance higher accuracy and computational time. The output is obtained from the time- history output of the contact pressure forces including the normal and friction forces on the lead along the shaft. These values are used to calculate the resistive force on the shaft as it moves through the lead, and thus the device force. Results of these highly nonlinear, high strain analyses are compared to experimental device force results. Model errors compared to experimental results for all 17 devices ranged from 0% to 20% with a mean absolute error of 6.4%, indicating most errors were small. In particular, the standard error in manufacturing is SE = ±14%. In this case, 15 of 17 devices (88%) are within ±1SE (±14%) and 2 of 17 devices (12%) are within ±2SE (±28). These results show low errors and a distribution of errors compared to experimental results that are within experimental device construction variability. The overall modelling methodology is objective and repeatable, and thus generalizable. The exact same modelling approach is applied to all devices with only the device geometry changing. The results validate the overall approach with relatively low error, providing a general modelling methodology for accurate design of HF2V devices.

Research papers, University of Canterbury Library

A seismic financial risk analysis of typical New Zealand reinforced concrete buildings constructed with topped precast concrete hollow-core units is performed on the basis of experimental research undertaken at the University of Canterbury over the last five years. An extensive study that examines seismic demands on a variety of multi-storey RC buildings is described and supplemented by the experimental results to determine the inter-storey drift capacities of the buildings. Results of a full-scale precast concrete super-assemblage constructed and tested in the laboratory in two stages are used. The first stage investigates existing construction and demonstrates major shortcomings in construction practice that would lead to very poor seismic performance. The second stage examines the performance of the details provided by Amendment No. 3 to the New Zealand Concrete Design Code NZS 3101:1995. This paper uses a probabilistic financial risk assessment framework to estimate the expected annual loss (EAL) from previously developed fragility curves of RC buildings with precast hollow core floors connected to the frames according to the pre-2004 standard and the two connection details recommended in the 2004 amendment. Risks posed by different levels of damage and by earthquakes of different frequencies are examined. The structural performance and financial implications of the three different connection details are compared. The study shows that the improved connection details recommended in the 2004 amendment give a significant economic payback in terms of drastically reduced financial risk, which is also representative of smaller maintenance cost and cheaper insurance premiums.

Research papers, University of Canterbury Library

The recent Canterbury earthquake sequence in 2010-2011 highlighted a uniquely severe level of structural damage to modern buildings, while confirming the high vulnerability and life threatening of unreinforced masonry and inadequately detailed reinforced concrete buildings. Although the level of damage of most buildings met the expected life-safety and collapse prevention criteria, the structural damage to those building was beyond economic repair. The difficulty in the post-event assessment of a concrete or steel structure and the uneconomical repairing costs are the big drivers of the adoption of low damage design. Among several low-damage technologies, post-tensioned rocking systems were developed in the 1990s with applications to precast concrete members and later extended to structural steel members. More recently the technology was extended to timber buildings (Pres-Lam system). This doctoral dissertation focuses on the experimental investigation and analytical and numerical prediction of the lateral load response of dissipative post-tensioned rocking timber wall systems. The first experimental stages of this research consisted of component testing on both external replaceable devices and internal bars. The component testing was aimed to further investigate the response of these devices and to provide significant design parameters. Post-tensioned wall subassembly testing was then carried out. Firstly, quasi-static cyclic testing of two-thirds scale post-tensioned single wall specimens with several reinforcement layouts was carried out. Then, an alternative wall configuration to limit displacement incompatibilities in the diaphragm was developed and tested. The system consisted of a Column-Wall-Column configuration, where the boundary columns can provide the support to the diaphragm with minimal uplifting and also provide dissipation through the coupling to the post-tensioned wall panel with dissipation devices. Both single wall and column-wall-column specimens were subjected to drifts up to 2% showing excellent performance, limiting the damage to the dissipating devices. One of the objectives of the experimental program was to assess the influence of construction detailing, and the dissipater connection in particular proved to have a significant influence on the wall’s response. The experimental programs on dissipaters and wall subassemblies provided exhaustive data for the validation and refinement of current analytical and numerical models. The current moment-rotation iterative procedure was refined accounting for detailed response parameters identified in the initial experimental stage. The refined analytical model proved capable of fitting the experimental result with good accuracy. A further stage in this research was the validation and refinement of numerical modelling approaches, which consisted in rotational spring and multi-spring models. Both the modelling approaches were calibrated versus the experimental results on post-tensioned walls subassemblies. In particular, the multi-spring model was further refined and implemented in OpenSEES to account for the full range of behavioural aspects of the systems. The multi-spring model was used in the final part of the dissertation to validate and refine current lateral force design procedures. Firstly, seismic performance factors in accordance to a Force-Based Design procedure were developed in accordance to the FEMA P-695 procedure through extensive numerical analyses. This procedure aims to determine the seismic reduction factor and over-strength factor accounting for the collapse probability of the building. The outcomes of this numerical analysis were also extended to other significant design codes. Alternatively, Displacement-Based Design can be used for the determination of the lateral load demand on a post-tensioned multi-storey timber building. The current DBD procedure was used for the development of a further numerical analysis which aimed to validate the procedure and identify the necessary refinements. It was concluded that the analytical and numerical models developed throughout this dissertation provided comprehensive and accurate tools for the determination of the lateral load response of post-tensioned wall systems, also allowing the provision of design parameters in accordance to the current standards and lateral force design procedures.

Research papers, University of Canterbury Library

In recent years, rocking isolation has become an effective approach to improve seismic performance of steel and reinforced concrete structures. These systems can mitigate structural damage through rigid body displacement and thus relatively low requirements for structural ductility, which can significantly improve seismic resilience of structures and reduce repairing costs after strong earthquakes. A number of base rocking structural systems with only a single rocking interface have been proposed. However, these systems can have significant high mode effect for high rise structures due to the single rocking interface. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. A number of structural configurations will be tested [1, 2], and non-structural elements including ceilings, infilling walls, glazed curtain walls, precast concrete panels, piping system will also be tested in this project [3]. Within this study, a multiple rocking column steel structural system was proposed and investigated mainly by Tongji team with assistance of NZ members. The concept of rocking column system initiates from the structure of Chinese ancient wooden pagoda. In some of Chinese wooden pagodas, there are continuous core columns hanged only at the top of each pagoda, which is not connected to each stories. This core column can effectively avoid collapse of the whole structure under large storey drifts. Likewise, there are also central continuous columns in the newly proposed steel rocking column system, which can avoid weak story failure mechanism and make story drifts more uniform. In the proposed rocking column system, the structure can switch between an elastic rigidly connected moment resisting frame and a controlled rocking column system when subjected to strong ground motion excitations. The main seismic energy can be dissipated by asymmetric friction beam–column connections, thereby effectively reducing residual displacement of the structure under seismic loading without causing excessive damage to structural members. Re–centering of the structure is provided not only by gravity load carried by rocking columns, but also by mould coil springs. To investigate dynamic properties of the proposed system under different levels of ground excitations, a full-scale threestory steel rocking column structural system with central continuous columns is to be tested using the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China and an analytical model is established. A finite element model is also developed using ABAQUS to simulate the structural dynamic responses. The rocking column system proposed in this paper is shown to produce resilient design with quick repair or replacement.

Research papers, University of Canterbury Library

One of the most controversial issues highlighted by the 2010-2011 Christchurch earthquake series and more recently the 2016 Kaikoura earthquake, has been the evident difficulty and lack of knowledge and guidelines for: a) evaluation of the residual capacity damaged buildings to sustain future aftershocks; b) selection and implementation of a series of reliable repairing techniques to bring back the structure to a condition substantially the same as prior to the earthquake; and c) predicting the cost (or cost-effectiveness) of such repair intervention, when compared to fully replacement costs while accounting for potential aftershocks in the near future. As a result of such complexity and uncertainty (i.e., risk), in combination with the possibility (unique in New Zealand when compared to most of the seismic-prone countries) to rely on financial support from the insurance companies, many modern buildings, in a number exceeding typical expectations from past experiences at an international level, have ended up being demolished. This has resulted in additional time and indirect losses prior to the full reconstruction, as well as in an increase in uncertainty on the actual relocation of the investment. This research project provides the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information to assess the residual capacity of damage reinforced concrete buildings, and to evaluate the feasibility of repairing techniques, in order to support their delicate decision-making process of repair vs. demolition or replacement. Literature review on effectiveness of epoxy injection repairs, as well as experimental tests on full-scale beam-column joints shows that repaired specimens have a reduced initial stiffness compared with the undamaged specimen, with no apparent strength reduction, sometimes exhibiting higher displacement ductility capacities. Although the bond between the steel and concrete is only partially restored, it still allows the repaired specimen to dissipate at least the same amount of hysteretic energy. Experimental tests on buildings subjected to earthquake loading demonstrate that even for severe damage levels, the ability of the epoxy injection to restore the initial stiffness of the structure is significant. Literature review on damage assessment and repair guidelines suggests that there is consensus within the international community that concrete elements with cracks less than 0.2 mm wide only require cosmetic repairs; epoxy injection repairs of cracks less and 2.0 mm wide and concrete patching of spalled cover concrete (i.e., minor to moderate damage) is an appropiate repair strategy; and for severe damaged components (e.g., cracks greater than 2.0 mm wide, crushing of the concrete core, buckling of the longitudinal reinforcement) local replacement of steel and/or concrete in addition to epoxy crack injection is more appropriate. In terms of expected cracking patterns, non-linear finite element investigations on well-designed reinforced concrete beam-to-column joints, have shown that lower number of cracks but with wider openings are expected to occur for larger compressive concrete strength, f’c, and lower reinforcement content, ρs. It was also observed that the tensile concrete strength, ft, strongly affects the expected cracking pattern in the beam-column joints, the latter being more uniformly distributed for lower ft values. Strain rate effects do not seem to play an important role on the cracking pattern. However, small variations in the cracking pattern were observed for low reinforcement content as it approaches to the minimum required as per NZS 3101:2006. Simple equations are proposed in this research project to relate the maximum and residual crack widths with the steel strain at peak displacement, with or without axial load. A literature review on fracture of reinforcing steel due to low-cycle fatigue, including recent research using steel manufactured per New Zealand standards is also presented. Experimental results describing the influence of the cyclic effect on the ultimate strain capacity of the steel are also discussed, and preliminary equations to account for that effect are proposed. A literature review on the current practice to assess the seismic residual capacity of structures is also presented. The various factors affecting the residual fatigue life at a component level (i.e., plastic hinge) of well-designed reinforced concrete frames are discussed, and equations to quantify each of them are proposed, as well as a methodology to incorporate them into a full displacement-based procedure for pre-earthquake and post-earthquake seismic assessment.

Research papers, University of Canterbury Library

Timber has experienced renewed interests as a sustainable building material in recent times. Although traditionally it has been the prime choice for residential construction in New Zealand and some other parts of the world, its use can be increased significantly in the future through a wider range of applications, particularly when adopting engineered wood material, Research has been started on the development of innovative solutions for multi-storey non-residential timber buildings in recent years and this study is part of that initiative. Application of timber in commercial and office spaces posed some challenges with requirements of large column-free spaces. The current construction practice with timber is not properly suited for structures with the aforementioned required characteristics and new type of structures has to be developed for this type of applications. Any new structural system has to have adequate capacity for carry the gravity and lateral loads due to occupancy and the environmental effects. Along with wind loading, one of the major sources of lateral loads is earthquakes. New Zealand, being located in a seismically active region, has significant risk of earthquake hazard specially in the central region of the country and any structure has be designed for the seismic loading appropriate for the locality. There have been some significant developments in precast concrete in terms of solutions for earthquake resistant structures in the last decade. The “Hybrid” concept combining post-tensioning and energy dissipating elements with structural members has been introduced in the late 1990s by the precast concrete industry to achieve moment-resistant connections based on dry jointed ductile connections. Recent research at the University of Canterbury has shown that the concept can be adopted for timber for similar applications. Hybrid timber frames using post-tensioned beams and dissipaters have the potential to allow longer spans and smaller cross sections than other forms of solid timber frames. Buildings with post-tensioned frames and walls can have larger column-free spaces which is a particular advantage for non-residential applications. While other researchers are focusing on whole structural systems, this research concentrated on the analysis and design of individual members and connections between members or between member and foundation. This thesis extends existing knowledge on the seismic behaviour and response of post-tensioned single walls, columns under uni-direction loads and small scale beam-column joint connections into the response and design of post-tensioned coupled walls, columns under bi-directional loading and full-scale beam-column joints, as well as to generate further insight into practical applications of the design concept for subassemblies. Extensive experimental investigation of walls, column and beam-column joints provided valuable confirmation of the satisfactory performance of these systems. In general, they all exhibited almost complete re-centering capacity and significant energy dissipation, without resulting into structural damage. The different configurations tested also demonstrated the flexibility in design and possibilities for applications in practical structures. Based on the experimental results, numerical models were developed and refined from previous literature in precast concrete jointed ductile connections to predict the behaviour of post-tensioned timber subassemblies. The calibrated models also suggest the values of relevant parameters for applications in further analysis and design. Section analyses involving those parameters are performed to develop procedures to calculate moment capacities of the subassemblies. The typical features and geometric configurations the different types of subassemblies are similar with the only major difference in the connection interfaces. With adoption of appropriate values representing the corresponding connection interface and incorporation of the details of geometry and configurations, moment capacities of all the subassemblies can be calculated with the same scheme. That is found to be true for both post-tensioned-only and hybrid specimens and also applied for both uni-directional and bi-directional loading. The common section analysis and moment capacity calculation procedure is applied in the general design approach for subassemblies.

Research papers, University of Canterbury Library

Geosynthetic reinforced soil (GRS) walls involve the use of geosynthetic reinforcement (polymer material) within the retained backfill, forming a reinforced soil block where transmission of overturning and sliding forces on the wall to the backfill occurs. Key advantages of GRS systems include the reduced need for large foundations, cost reduction (up to 50%), lower environmental costs, faster construction and significantly improved seismic performance as observed in previous earthquakes. Design methods in New Zealand have not been well established and as a result, GRS structures do not have a uniform level of seismic and static resistance; hence involve different risks of failure. Further research is required to better understand the seismic behaviour of GRS structures to advance design practices. The experimental study of this research involved a series of twelve 1-g shake table tests on reduced-scale (1:5) GRS wall models using the University of Canterbury shake-table. The seismic excitation of the models was unidirectional sinusoidal input motion with a predominant frequency of 5Hz and 10s duration. Seismic excitation of the model commenced at an acceleration amplitude level of 0.1g and was incrementally increased by 0.1g in subsequent excitation levels up to failure (excessive displacement of the wall panel). The wall models were 900mm high with a full-height rigid facing panel and five layers of Microgird reinforcement (reinforcement spacing of 150mm). The wall panel toe was founded on a rigid foundation and was free to slide. The backfill deposit was constructed from dry Albany sand to a backfill relative density, Dr = 85% or 50% through model vibration. The influence of GRS wall parameters such as reinforcement length and layout, backfill density and application of a 3kPa surcharge on the backfill surface was investigated in the testing sequence. Through extensive instrumentation of the wall models, the wall facing displacements, backfill accelerations, earth pressures and reinforcement loads were recorded at the varying levels of model excitation. Additionally, backfill deformation was also measured through high-speed imaging and Geotechnical Particle Image Velocimetry (GeoPIV) analysis. The GeoPIV analysis enabled the identification of the evolution of shear strains and volumetric strains within the backfill at low strain levels before failure of the wall thus allowing interpretations to be made regarding the strain development and shear band progression within the retained backfill. Rotation about the wall toe was the predominant failure mechanism in all excitation level with sliding only significant in the last two excitation levels, resulting in a bi-linear displacement acceleration curve. An increase in acceleration amplification with increasing excitation was observed with amplification factors of up to 1.5 recorded. Maximum seismic and static horizontal earth pressures were recorded at failure and were recorded at the wall toe. The highest reinforcement load was recorded at the lowest (deepest in the backfill) reinforcement layer with a decrease in peak load observed at failure, possibly due to pullout failure of the reinforcement layer. Conversely, peak reinforcement load was recorded at failure for the top reinforcement layer. The staggered reinforcement models exhibited greater wall stability than the uniform reinforcement models of L/H=0.75. However, similar critical accelerations were determined for the two wall models due to the coarseness of excitation level increments of 0.1g. The extended top reinforcements were found to restrict the rotational component of displacement and prevented the development of a preliminary shear band at the middle reinforcement layer, contributing positively to wall stability. Lower acceleration amplification factors were determined for the longer uniform reinforcement length models due to reduced model deformation. A greater distribution of reinforcement load towards the top two extended reinforcement layers was also observed in the staggered wall models. An increase in model backfill density was observed to result in greater wall stability than an increase in uniform reinforcement length. Greater acceleration amplification was observed in looser backfill models due to their lower model stiffness. Due to greater confinement of the reinforcement layers, greater reinforcement loads were developed in higher density wall models with less wall movement required to engage the reinforcement layers and mobilise their resistance. The application of surcharge on the backfill was observed to initially increase the wall stability due to greater normal stresses within the backfill but at greater excitation levels, the surcharge contribution to wall destabilising inertial forces outweighs its contribution to wall stability. As a result, no clear influence of surcharge on the critical acceleration of the wall models was observed. Lower acceleration amplification factors were observed for the surcharged models as the surcharge acts as a damper during excitation. The application of the surcharge also increases the magnitude of reinforcement load developed due to greater confinement and increased wall destabilising forces. The rotation of the wall panel resulted in the progressive development of shears surface with depth that extended from the backfill surface to the ends of the reinforcement (edge of the reinforced soil block). The resultant failure plane would have extended from the backfill surface to the lowest reinforcement layer before developing at the toe of the wall, forming a two-wedge failure mechanism. This is confirmed by development of failure planes at the lowest reinforcement layer (deepest with the backfill) and at the wall toe observed at the critical acceleration level. Key observations of the effect of different wall parameters from the GeoPIV results are found to be in good agreement with conclusions developed from the other forms of instrumentation. Further research is required to achieve the goal of developing seismic guidelines for GRS walls in geotechnical structures in New Zealand. This includes developing and testing wall models with a different facing type (segmental or wrap-around facing), load cell instrumentation of all reinforcement layers, dynamic loading on the wall panel and the use of local soils as the backfill material. Lastly, the limitations of the experimental procedure and wall models should be understood.