Search

found 7 results

Research papers, University of Canterbury Library

In this article we utilize grounded theory to explore women’s experiences in the unique construction industry context that followed the 2010 Canterbury (New Zealand) earthquakes. Data were obtained from 36 semi-structured interviews conducted with women working in a variety of occupations in the construction industry. We identify three inter-related categories: capitalizing on opportunity, demonstrating capability and surface tolerance, which together represent a response process that we label ‘deferential tailoring’. The deferential tailoring process explains how women intentionally shape their response to industry conditions through self-regulating behaviors that enables them to successfully seize opportunities and manage gender-related challenges in the working environment. Our findings challenge existing research which suggests that women adopt submissive coping strategies to conform to androcentric norms in the construction industry. Instead, we argue that the process of deferential tailoring can empower women to build positive workplace relationships, enhance career development, and help shift perceptions of the value of their work in the industry.

Research papers, University of Canterbury Library

Over 6.3 million waste tyres are produced annually in New Zealand (Tyrewise, 2021), leading to socioeconomic and environmental concerns. The 2010-11 Canterbury Earthquake Sequence inflicted extensive damage to ~6,000 residential buildings, highlighting the need to improve the seismic resilience of the residential housing sector. A cost-effective and sustainable eco-rubber geotechnical seismic isolation (ERGSI) foundation system for new low-rise buildings was developed by the authors. The ERGSI system integrates a horizontal geotechnical seismic isolation (GSI) layer i.e., a deformable seismic energy dissipative filter made of granulated tyre rubber (GTR) and gravel (G) – and a flexible rubberised concrete raft footing. Geotechnical experimental and numerical investigations demonstrated the effectiveness of the ERGSI system in reducing the seismic demand at the foundation level (i.e., reduced peak ground acceleration) (Hernandez et al., 2019; Tasalloti et al., 2021). However, it is essential to ensure that the ERGSI system has minimal leaching attributes and does not result in long-term negative impacts on the environment.

Research Papers, Lincoln University

Disasters are often followed by a large-scale stimulus supporting the economy through the built environment, which can last years. During this time, official economic indicators tend to suggest the economy is doing well, but as activity winds down, the sentiment can quickly change. In response to the damaging 2011 earthquakes in Canterbury, New Zealand, the regional economy outpaced national economic growth rates for several years during the rebuild. The repair work on the built environment created years of elevated building activity. However, after the peak of the rebuilding activity, as economic and employment growth retracts below national growth, we are left with the question of how the underlying economy performs during large scale stimulus activity in the built environment. This paper assesses the performance of the underlying economy by quantifying the usual, demand-driven level of building activity at this time. Applying an Input–Output approach and excluding the economic benefit gained from the investment stimulus reveals the performance of the underlying economy. The results reveal a strong growing underlying economy, and while convergence was expected as the stimulus slowed down, the results found that growth had already crossed over for some time. The results reveal that the investment stimulus provides an initial 1.5% to 2% growth buffer from the underlying economy before the growth rates cross over. This supports short-term economic recovery and enables the underlying economy to transition away from a significant rebuild stimulus. Once the growth crosses over, five years after the disaster, economic growth in the underlying economy remains buoyant even if official regional economic data suggest otherwise.

Research papers, University of Canterbury Library

Light timber framed (LTF) structures provide a cost-effective and structurally efficient solution for low-rise residential buildings. This paper studies seismic performance of single-storey LTF buildings sheathed by gypsum-plasterboards (GPBs) that are a typical lining product in New Zealand houses. Compared with wood-based structural panels, GPBs tend to be more susceptible to damage when they are used in bracing walls to resist earthquake loads. This study aims to provide insights on how the bracing wall irregularity allowed by the current New Zealand standard NZS 3604 and the in-plane rigidity of ceiling diaphragms affect the overall seismic performance of these GPB-braced LTF buildings. Nonlinear time-history analyses were conducted on a series of single-storey baseline buildings with different levels of bracing wall irregularities and ceiling diaphragm rigidity. The results showed significant torsional effect caused by the eccentric bracing wall layout with semi-rigid/rigid ceiling diaphragms. On average, bracing wall drift demand caused by the extreme bracing wall irregularities was three times of that in the regular bracing wall layout under the rigid diaphragm assumption. This finding agreed well with the house survey after the 2011 Canterbury Earthquake in which significantly more damage was observed in the houses with irregular bracing wall layouts and relatively rigid diaphragms. Therefore, it is recommended to limit the level of bracing wall eccentricity and ensure the sufficiently rigid diaphragms to avoid excessive damage in these LTF buildings in future events.

Research papers, University of Canterbury Library

Cities need places that contribute to quality of life, places that support social interaction. Wellbeing, specifically, community wellbeing, is influenced by where people live, the quality of place is important and who they connect with socially. Social interaction and connection can come from the routine involvement with others, the behavioural acts of seeing and being with others. This research consisted of 38 interviews of residents of Christchurch, New Zealand, in the years following the 2010-12 earthquakes. Residents were asked about the place they lived and their interactions within their community. The aim was to examine the role of neighbourhood in contributing to local social connections and networks that contribute to living well. Specifically, it focused on the role and importance of social infrastructure in facilitating less formal social interactions in local neighbourhoods. It found that neighbourhood gathering places and bumping spaces can provide benefit for living well. Social infrastructure, like libraries, parks, primary schools, and pubs are some of the places of neighbourhood that contributed to how well people can encounter others for social interaction. In addition, unplanned interactions were facilitated by the existence of bumping places, such as street furniture. The wellbeing value of such spaces needs to be acknowledged and factored into planning decisions, and local rules and regulations need to allow the development of such spaces.

Research papers, University of Canterbury Library

This chapter will draw on recent literature and practice experience to discuss the nature of field education in Aotearoa New Zealand. Social work education in this country is provided by academic institutions that are approved by the Social Workers Registration Board. The field education curriculum is therefore shaped by both the regulatory body and the tertiary institutions. Significant numbers of students undertake field education annually which places pressure on industry and raises concerns as to the quality of student experience. Although the importance of field education is undisputed it remains poised in a liminal space between the tertiary education and social service sectors where it is not sufficiently resourced by either. This affects the provision of practice placements as well as the establishment of long-term cross-sector partnerships. Significant events such as the 2010 and 2011 Christchurch earthquakes and recent terrorist attacks have exposed students to different field education experiences signalling the need for programmes to be responsive. Examples of creative learning opportunities in diverse environments, including in indigenous contexts, will be described. Drawing upon recent research, we comment on student and field educator experiences of supervision in the field. Recommendations to further develop social work field education in Aotearoa New Zealand relate to resourcing, infrastructure and quality, support for field educators, and assessment.

Research papers, University of Canterbury Library

Ongoing climate change triggers increasing temperature and more frequent extreme events which could limit optimal performance of haliotids, affect their physiology and biochemistry as well as influencing their population structure. Haliotids are a valuable nearshore fishery in a number of countries and many are showing a collapse of stocks because of overexploitation, environmental changes, loss of habitat, and disease. The haliotid in New Zealand commonly referred to as the blackfoot pāua (Haliotis iris) contribute a large and critical cultural, recreational and economic resource. Little was known about pāua responses to increasing temperature and acute environmental factors, as well as information about population size structure in Kaikoura after the earthquake 2016 and in Banks Peninsula. The aims of this study were to investigate the effects of temperature on scope for growth (SfG); physiological and biochemical responses of pāua subjected to different combined stressors including acute temperature, acute salinity and progressive hypoxia; and describe population size structure and shell morphology in different environments in Kaikoura and Banks Peninsula. The main findings of the present study found that population size structures of pāua were site-specific, and the shell length and shell height ratio of 3.25 could distinguish between stunted and non-stunted populations. The study found that high water temperature resulted in a reduction in absorbed energy from food, an increase in respiration energy, and ammonia excretion energy. Surveys were conducted at six study sites around the Canterbury Region over three years in order to better understand the population size structure and shell morphology of pāua. The findings found that the population size structure at 6 sites differed. Both juveniles and adults were found in intertidal areas at five sites. However, at Cape Three Points, pāua were found only in subtidal zones. One of the sites, Little Port Cooper, had a stunted population where only two pāua reached 125 mm in length over three years. In addition, most pāua in Little Port Cooper and Cape Three Points were adults, while Seal Reef had mostly juveniles. Wakatu Quay and Omihi had a full size range of pāua. Oaro population was dominated with juveniles and sub-adults. Recruitment and growth of pāua were successful after the earthquake in 2016. Research into pāua shell morphologies also determined that shell dimensions differed between sites. The relationships of shell length to shell width were linear and the relationship of shell length to shell height was curvilinear. Interestingly, SL:SH ratio of 3.25 is able to be used to identify stunted and non-stunted populations for pāua larger than 90 mm in length. Little Port Cooper was a stunted population with mean SL:SH ratio being 3.16. In the laboratory, scope for growth of pāua was investigated at four different temperatures of 12oC, 15oC, 18oC and 21oC over four weeks’ acclimation. The current study has found that SfG of pāua highly depended on temperature. Absorbed energy and respiration energy accounted for the highest proportion of the SfG of pāua. The respiration energy of pāua accounted for approximately 36%, 40%, 49% and 69% of the absorbed energy at 12°C, 15°C, 18°C and 21°C, respectively. The pāua at all acclimation temperatures had a positive scope for growth. The study suggested that the SfG was highest at 15°C, while the value at 21°C was the lowest. However, SfG at 18°C and 21°C decreased after 14 days of acclimation. Because of maintaining almost unchanged oxygen consumption over four weeks’ acclimation, pāua showed their poor abilities to acclimate to an increase in temperature. Therefore, they may be more vulnerable in future warming scenarios. The physiological and biochemical responses of pāua toward different combined stressors included three experiments. In terms of the acute temperature experiment, pāua were acclimated at 12oC, 15oC, 18oC or 21oC for two weeks before stepwise exposure to four temperatures of 12oC, 15oC, 18oC and 21oC every 4 hours. The acute salinity change, pāua were acclimated at 12oC, 15oC or 18oC over two weeks. Pāua were then exposed to a stepwise decrease of salinity of 2‰ every two hours from 34 – 22‰. Regarding the declining oxygen level, pāua were acclimated at 15 oC or 18oC for two weeks before exposure to one of four temperatures at 12oC, 15oC, 18oC or 21oC in one hour. After that acute progressive hypoxia was studied in closed respirometers for around six hours. The findings showed that there were interactions between combined stressors, affecting physiology of pāua (metabolism and heart rate). This suggests that environmental factors do not have a separate effect, but they also have interactions that enhance negative effects on pāua. Also, both oxygen uptake and heart rate responded quickly to temperature change and increased with rising temperature. On the other hand, oxygen uptake and heart rate decreased with reducing salinity and progressive hypoxia (before critical oxygen tension - Pcrit). Pcrit over four acute temperature exposures, ranged between 30.2 and 80.0 mmHg, depending on the exposure temperature. Acclimation temperature, combined with acute temperature, salinity or hypoxia stress affected the biochemistry of pāua. Pāua are osmoconformers so decreased salinity resulted in reducing haemolymph ionic concentration and increasing body volume. They were hypo-ionic with respect to sodium and potassium over the salinity ranges of 34 - 22‰. Haemocyanin accounts for a large pecentage of haemolymph protein, so trends of protein followed haemocyanin. Pāua tended to store oxygen in haemocyanin under extreme salinity stress at 22‰ and extreme hypoxia around 10 mmHg, rather than in oxygen transport. In conclusion, pāua at different sites had different population structures and morphologies. Pāua are sensitive to environmental stressors. They consumed more oxygen at high temperatures because they do not have thermal acclimation capacity. They are also osmoconformers with haemolymph sodium and potassium decreasing with salinity medium. Under progressive hypoxia, pāua could regulate oxygen and heart rate until Pcrit depending on temperature. Acute environmental changes also disturbed haemolyph parameters. 12°C and 15°C could be in the range of optimal temperature with higher SfG and less stress when exposed to acute environmental changes. Meanwhile long term exposure to 21°C is likely to be outside of the optimal range for the pāua. With ongoing climate change, pāua populations are more vulnerable so conservation is necessary. The research contributes to improving fishery management, providing insights into different environmental stressors affecting the energy demand and physiological and biochemical responses of pāua. It also allow to predicting the growth patterns and responses of pāua to adapt to climate change.