Search

found 39 results

Images, UC QuakeStudies

A photograph of a bookcase in the Civil Suite at the University of Canterbury after the 4 September 2010 earthquake. The photograph was taken on the day when the staff were allowed to return to the building. The shelves of the bookcase have been removed, exposing damage along the sides where they knocked against the back panel. Some books have been left on the bottom shelf.

Images, UC QuakeStudies

College of Engineering staff stand beside a sign pointing through a fern garden to the temporary new entrance to the School of Engineering office. Asbestos is currently being removed from areas within the building. Pictured: Lisa Carter, Arran Yuill, Cecillia King, Karen Carthew, Janet Butcher, Cheryl McNickel and Vicki O'Sullivan.

Images, UC QuakeStudies

College of Engineering staff stand beside a sign pointing through a fern garden to the temporary new entrance to the School of Engineering office. Asbestos is currently being removed from areas within the building. Pictured: Lisa Carter, Arran Yuill, Cecillia King, Karen Carthew, Janet Butcher, Cheryl McNickel and Vicki O'Sullivan.

Research papers, University of Canterbury Library

This paper presents site-specific and spatially-distributed ground-motion intensity estimates which have been utilized in the aftermath of the 2010-2011 Canterbury, New Zealand earthquakes. The methodology underpinning the ground motion intensity estimation makes use of both prediction models for ground motion intensity and its within-event spatial correlation. A key benefit of the methodology is that the estimated ground motion intensity at a given location is not a single value but a distribution of values. The distribution is comprised of both a mean and standard deviation, with the standard deviation being a function of the distance to nearby observations at strong motion stations. The methodology is illustrated for two applications. Firstly, maps of conditional peak ground acceleration (PGA) have been developed for the major events in the Canterbury earthquake sequence, which among other things, have been utilized for assessing liquefaction triggering susceptibility of land in residential areas. Secondly, the conditional distribution of response spectral ordinates is obtained at the location of the Canterbury Television building (CTV), which catastrophically collapsed in the 22 February 2011 earthquake. The conditional response spectra provide insight for the selection of ground motion records for use in forensic seismic response analyses of important structures at locations where direct recordings are absent.