A photograph of the earthquake damage to the old Registry Building on the corner of Worcester and Montreal Streets. The masonry of the Worcester Street gable has crumbled and is lying on the street in front. Wire fencing has been used to cordon off the building.
A photograph of the earthquake damage to Cartridge World on Linwood Avenue. The bricks on the west side of the building have crumbled onto the pavement below, exposing the inner wall.
A photograph of the side wall of the collapsed Herbal Heaven store on the corner of Linwood Avenue and Aldwins Road. The wall has come away from the rest of the building and is standing on a lean.
Unreinforced masonry (URM) buildings have repeatedly been shown to perform poorly in large magnitude earthquakes, with both New Zealand and Australia having a history of past earthquakes that have resulted in fatalities due to collapsed URM buildings. A comparison is presented here of the URM building stock and the seismic vulnerability of Christchurch and Adelaide in order to demonstrate the relevance to Australian cities of observations in Christchurch resulting from the 2010/2011 Canterbury earthquake swarm. It is shown that the materials, architecture and hence earthquake strength of URM buildings in both countries is comparable and that Adelaide and other cities of Australia have seismic vulnerability sufficient to cause major damage to their URM buildings should a design level earthquake occur. Such an earthquake is expected to cause major building damage, and fatalities should be expected.
As part of the 'Project Masonry' Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. In addition, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake and brief suggestions are provided regarding appropriate seismic retrofit and remediation techniques for stone masonry buildings. http://www.nzsee.org.nz/publications/nzsee-quarterly-bulletin/
A photograph of administrators and technicians from the Department of Civil and Natural Resources Engineering at the University of Canterbury enjoying a barbeque outside the Avonhead Baptist Church. The students and staff from this department used the church as a base after the 22 February 2011 earthquake, until their building on campus was deemed safe to enter.
A photograph of administrators and technicians from the Department of Civil and Natural Resources Engineering at the University of Canterbury enjoying a barbeque outside the Avonhead Baptist Church. The students and staff from this department used the church as a base after the 22 February 2011 earthquake, until their building on campus was deemed safe to enter.
A photograph of administrators and technicians from the Department of Civil and Natural Resources Engineering at the University of Canterbury enjoying a barbeque outside the Avonhead Baptist Church. The students and staff from this department used the church as a base after the 22 February 2011 earthquake, until their building on campus was deemed safe to enter.
A photograph of administrators and technicians from the Department of Civil and Natural Resources Engineering at the University of Canterbury enjoying a barbeque outside the Avonhead Baptist Church. The students and staff from this department used the church as a base after the 22 February 2011 earthquake, until their building on campus was deemed safe to enter.
A photograph of administrators and technicians from the Department of Civil and Natural Resources Engineering at the University of Canterbury enjoying a barbeque outside the Avonhead Baptist Church. The students and staff from this department used the church as a base after the 22 February 2011 earthquake, until their building on campus was deemed safe to enter.
A photograph of administrators and technicians from the Department of Civil and Natural Resources Engineering at the University of Canterbury enjoying a barbeque outside the Avonhead Baptist Church. The students and staff from this department used the church as a base after the 22 February 2011 earthquake, until their building on campus was deemed safe to enter.
A photograph of administrators and technicians from the Department of Civil and Natural Resources Engineering at the University of Canterbury enjoying a barbeque outside the Avonhead Baptist Church. The students and staff from this department used the church as a base after the 22 February 2011 earthquake, until their building on campus was deemed safe to enter.
A photograph of administrators and technicians from the Department of Civil and Natural Resources Engineering at the University of Canterbury enjoying a barbeque outside the Avonhead Baptist Church. The students and staff from this department used the church as a base after the 22 February 2011 earthquake, until their building on campus was deemed safe to enter.
A photograph of a man cooking sausages outside the Avonhead Baptist Church for the administrators and technicians from the Department of Civil and Natural Resources Engineering at the University of Canterbury. The students and staff from this department used the church as a base after the 22 February 2011 earthquake, until their building on campus was deemed safe to enter.
Structural Engineers from the New Zealand and Los Angeles County Fire Department Urban Search and Rescue teams outside the Kenton Chambers Building on Hereford Street.
Structural Engineers from the New Zealand and Los Angeles County Fire Department Urban Search and Rescue teams performing assessments of buildings on High Street near Manchester Street.
Structural Engineers from the New Zealand and Los Angeles County Fire Department Urban Search and Rescue teams performing an assessment of the Kenton Chambers Building on Hereford Street.
Structural Engineers from the New Zealand and Los Angeles County Fire Department Urban Search and Rescue teams performing an assessment of the Kenton Chambers Building on Hereford Street.
The sequence of earthquakes that has greatly affected Christchurch and Canterbury since September 2010 has again demonstrated the need for seismic retrofit of heritage unreinforced masonry buildings. Commencing in April 2011, the damage to unreinforced stone masonry buildings in Christchurch was assessed and recorded with the primary objective being to document the seismic performance of these structures, recognising that they constitute an important component of New Zealand’s heritage architecture. A damage statistics database was compiled by combining the results of safety evaluation placarding and post-earthquake inspections, and it was determined that the damage observed was consistent with observations previously made on the seismic performance of stone masonry structures in large earthquakes. Details are also given on typical building characteristics and on failure modes observed. Suggestions on appropriate seismic retrofit and remediation techniques are presented, in relation also to strengthening interventions that are typical for similar unreinforced stone masonry structures in Europe.
In the early morning of 4th September 2010 the region of Canterbury, New Zealand, was subjected to a magnitude 7.1 earthquake. The epicentre was located near the town of Darfield, 40 km west of the city of Christchurch. This was the country’s most damaging earthquake since the 1931 Hawke’s Bay earthquake (GeoNet, 2010). Since 4th September 2010 the region has been subjected to thousands of aftershocks, including several more damaging events such as a magnitude 6.3 aftershock on 22nd February 2011. Although of a smaller magnitude, the earthquake on 22nd February produced peak ground accelerations in the Christchurch region three times greater than the 4th September earthquake and in some cases shaking intensities greater than twice the design level (GeoNet, 2011; IPENZ, 2011). While in September 2010 most earthquake shaking damage was limited to unreinforced masonry (URM) buildings, in February all types of buildings sustained damage. Temporary shoring and strengthening techniques applied to buildings following the Darfield earthquake were tested in February 2011. In addition, two large aftershocks occurred on 13th June 2011 (magnitudes 5.7 and 6.2), further damaging many already weakened structures. The damage to unreinforced and retrofitted clay brick masonry buildings in the 4th September 2010 Darfield earthquake has already been reported by Ingham and Griffith (2011) and Dizhur et al. (2010b). A brief review of damage from the 22nd February 2011 earthquake is presented here