Search

found 68 results

Research papers, University of Canterbury Library

As a result of the Canterbury earthquakes, over 60% of the concrete buildings in the Christchurch Central Business District have been demolished. This experience has highlighted the need to provide guidance on the residual capacity and repairability of earthquake-damaged concrete buildings. Experience from 2010 Chile indicates that it is possible to repair severely damaged concrete elements (see photo at right), although limited testing has been performed on such repaired components. The first phase of this project is focused on the performance of two lightly-reinforced concrete walls that are being repaired and re-tested after damage sustained during previous testing.

Research papers, The University of Auckland Library

In the aftermath of the 2010-2011 Canterbury earthquakes in New Zealand, the residual capacity and reparability of damaged reinforced concrete (RC) structures was an issue pertinent to building owners, insurers, and structural engineers. Three precast RC moment-resisting frame specimens were extracted during the demolition of the Clarendon Tower in Christchurch after sustaining earthquake damage. These specimens were subjected to quasi-static cyclic testing as part of a research program to determine the reparability of the building. It was concluded that the precast RC frames were able to be repaired and retrofitted to an enhanced strength capacity with no observed reduction in displacement capacity, although the frames with “shear-ductile” detailing exhibited less displacement ductility capacity and energy dissipation capacity than the more conventionally detailed RC frames. Furthermore, the cyclic test results from the earthquake-damaged RC frames were used to verify the predicted inelastic demands applied to the specimens during the 2010-2011 Canterbury earthquakes. https://www.concrete.org/publications/acistructuraljournal.aspx

Research papers, University of Canterbury Library

Despite their good performance in terms of their design objectives, many modern code-prescriptive buildings built in Christchurch, New Zealand had to be razed after the 2010-2011 Canterbury earthquakes because repairs were deemed too costly due to widespread sacrificial damage. Clearly a more effective design paradigm is needed to create more resilient structures. Rocking, post-tensioned connections with supplemental energy dissipation can contribute to a damage avoidance designs (DAD). However, few have achieved all three key design objectives of damage-resistant rocking, inherent recentering ability, and repeatable, damage-free energy dissipation for all cycles, which together offer a response which is independent of loading history. Results of experimental tests are presented for a near full-scale rocking beam-column sub-assemblage. A matrix of test results is presented for the system under varying levels of posttensioning, with and without supplemental dampers. Importantly, this parametric study delineates each contribution to response. Practical limitations on posttensioning are identified: a minimum to ensure static structural re-centering, and a maximum to ensure deformability without threadbar yielding. Good agreement between a mechanistic model and experimental results over all parameters and inputs indicates the model is robust and accurate for design. The overall results indicate that it is possible to create a DAD connection where the non-linear force-deformation response is loading history independent and repeatable over numerous loading cycles, without damage, creating the opportunity for the design and implementation of highly resilient structures.

Videos, UC QuakeStudies

A video of a presentation by Dr Duncan Webb, Partner at Lane Neave, during the third plenary of the 2016 People in Disasters Conference. The presentation is titled, "Loss of Trust and other Earthquake Damage".The abstract for this presentation reads as follows: It was predictable that the earthquakes which hit the Canterbury region in 2010 and 2011 caused trauma. However, it was assumed that recovery would be significantly assisted by governmental agencies and private insurers. The expectation was that these organisations would relieve the financial pressures and associated anxiety caused by damage to property. Some initiatives did exactly that. However, there are many instances where difficulties with insurance and related issues have exacerbated the adverse effects of the earthquakes on people's wellness. In some cases, stresses around property issues have become and independent source of extreme anxiety and have had significant impacts on the quality of people's lives. Underlying this problem is a breakdown in trust between citizen and state, and insurer and insured. This has led to a pervading concern that entitlements are being denied. While such concerns are sometimes well founded, an approach which is premised on mistrust is frequently highly conflicted, costly, and often leads to worse outcomes. Professor Webb will discuss the nature and causes of these difficulties including: the complexity of insurance and repair issues, the organisational ethos of the relevant agencies, the hopes of homeowners and the practical gap which commonly arises between homeowner expectation and agency response. Observations will be offered on how the adverse effects of these issues can be overcome in dealing with claimants, and how such matters can be managed in a way which promotes the wellness of individuals.

Research papers, The University of Auckland Library

Five years after the devastating series of earthquakes in Christchurch, New Zealand, the structural engineering community is now focussing on low damage design by either proactively reducing the possibility of significant damage to primary steel members (i.e. developing seismic resisting systems that will deliver a high damage threshold in severe earthquakes) or by improved detailing of the primary steel members for rapid replacement. This paper presents a development of Eccentrically Braced Frames (EBFs) with replaceable active links. It uses the bolted flange- and web splicing concept to connect the active link to the collector beam or column. Finite element analyses have been performed to investigate the behaviour and reliability of EBFs with this new type replaceable active link. The results show a stable hysteretic behaviour and more significantly easier replacement of the damaged active link in comparison with conventional EBFs.

Research papers, University of Canterbury Library

The 2010-2011 Canterbury earthquake sequence, and the resulting extensive data sets on damaged buildings that have been collected, provide a unique opportunity to exercise and evaluate previously published seismic performance assessment procedures. This poster provides an overview of the authors’ methodology to perform evaluations with two such assessment procedures, namely the P-58 guidelines and the REDi Rating System. P-58, produced by the Federal Emergency Management Agency (FEMA) in the United States, aims to facilitate risk assessment and decision-making by quantifying earthquake ground shaking, structural demands, component damage and resulting consequences in a logical framework. The REDi framework, developed by the engineering firm ARUP, aids stakeholders in implementing resilience-based earthquake design. Preliminary results from the evaluations are presented. These have the potential to provide insights on the ability of the assessment procedures to predict impacts using “real-world” data. However, further work remains to critically analyse these results and to broaden the scope of buildings studied and of impacts predicted.

Images, eqnz.chch.2010

Porritt Park was, before the earthquakes, the headquarters of hockey in this region. Two astro-turf fields (the main one was to the left of the building), and corporate offices etc. The earthquakes buckled all the playing surfaces and damaged the buildings; a couple of smaller ones have been removed. Hockey shifted the other side of the cit...

Audio, Radio New Zealand

ANDREW LITTLE to the Prime Minister: What are the priorities for the Government in assisting communities affected by yesterday’s earthquake? MATT DOOCEY to the Minister of Finance: What advice has he received about the economic impact of the Kaikōura earthquake? EUGENIE SAGE to the Minister of Transport: What updates can he give on the transport sector’s response to earthquake damage to State Highway 1 and the rail line between Seddon and Cheviot? GRANT ROBERTSON to the Minister of Finance: What is his initial assessment of the fiscal impact of yesterday morning’s earthquake and what, if any, new or changed Budget allocations is he considering in response to the earthquake? PAUL FOSTER-BELL to the Minister of Civil Defence: How is the Government supporting people affected by the Kaikōura earthquake? RON MARK to the Minister of Civil Defence: Can the Government assure New Zealanders on our level of preparedness for all natural disasters? SUE MORONEY to the Minister of Transport: What roads and public transport services are currently not operational following damage from the earthquake yesterday and when is it expected access and services will be restored? BRETT HUDSON to the Minister of Transport: What action is the Government taking to repair damaged transport infrastructure following the Kaikōura earthquake? GARETH HUGHES to the Minister of Broadcasting: Will she join with me to acknowledge the work of all media in New Zealand, which is so important in times of natural disaster and crisis; if so, will she consider increasing our public broadcaster Radio New Zealand’s funding in Budget 2017? CLAYTON MITCHELL to the Minister of Civil Defence: What progress has been made, if any, on new civil defence legislation which focuses on large and significant events such as the Christchurch and Kaikōura earthquakes? ALASTAIR SCOTT to the Minister of Health: What updates has he received on the Government’s health response to the Kaikōura earthquake? CLARE CURRAN to the Minister of Civil Defence: What actions have been taken by Civil Defence to ensure those people in the areas worst hit by the earthquake have enough food, clothing, water, and shelter?

Research papers, University of Canterbury Library

The 2010-2011 Canterbury earthquake sequence was extremely damaging to structures in Christchurch and continues to have a large economic and social impact on the city and surrounding regions. In addition to strong ground shaking (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE), extensive liquefaction was observed, particularly in the 4 September 2010 Darfield earthquake and the 22 February 2011 Christchurch earthquake (Cubrinovski et al. 2010 BNZSEE; 2011 SRL). Large observed vertical ground motion amplitudes were recorded in the events in this sequence, with vertical peak ground accelerations of over 2.2g being observed at the Heathcote Valley Primary School during the Christchurch earthquake, and numerous other vertical motions exceeding 1.0g (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE; Fry et al 2011 SRL). Vertical peak ground accelerations of over 1.2g were observed in the Darfield earthquake.