Earthquake engineers at the University of Canterbury are world-leaders in designing buildings that will be better able to withstand earthquake shaking.
A sight becoming more common in post-earthquake Christchurch - lifting earthquake-affected buildings to allow their foundations to be replaced and or completely replaced.
Site of government-owned company responsible for settling AMI policy-holders' claims for Canterbury earthquake damage.
None
None
A charitable trust which began after the earthquakes to create and maintain temporary public parks on cleared sites in Christchurch.
None
Images of Christchurch following the earthquake, showing the demolition of buildings, street art, art, community and cultural life.
Our neighbours house during its "Deconstruction" yesterday... It has to be rebuilt after the Christchurch Earthquakes.
None
None
None
Towards Square
Toward hills
An entry from Ruth Gardner's Blog for 09 January 2014 entitled, "Wastewater Work".
None
Looking towards Square
In Worcester St
an advocacy network that aims to highlight injustices and issues affecting residents following the Canterbury earthquakes, and challenge decisions, policies and practices that disadvantage recovery.
Site of a residents' group formed to advocate and protect the rights of red-zoned home owners in the aftermath of the Canterbury earthquakes.
Now open - on The Square
Case study analysis of the 2010-2011 Canterbury Earthquake Sequence (CES), which particularly impacted Christchurch City, New Zealand, has highlighted the value of practical, standardised and coordinated post-earthquake geotechnical response guidelines for earthquake-induced landslides in urban areas. The 22nd February 2011 earthquake, the second largest magnitude event in the CES, initiated a series of rockfall, cliff collapse and loess failures around the Port Hills which severely impacted the south-eastern part of Christchurch. The extensive slope failure induced by the 22nd February 200 earthquake was unprecedented; and ground motions experienced significantly exceeded the probabilistic seismic hazard model for Canterbury. Earthquake-induced landslides initiated by the 22nd February 2011 earthquake posed risk to life safety, and caused widespread damage to dwellings and critical infrastructure. In the immediate aftermath of the 22nd February 2011 earthquake, the geotechnical community responded by deploying into the Port Hills to conduct assessment of slope failure hazards and life safety risk. Coordination within the voluntary geotechnical response group evolved rapidly within the first week post-earthquake. The lack of pre-event planning to guide coordinated geotechnical response hindered the execution of timely and transparent management of life safety risk from coseismic landslides in the initial week after the earthquake. Semi-structured interviews were conducted with municipal, management and operational organisations involved in the geotechnical response during the CES. Analysis of interview dialogue highlighted the temporal evolution of priorities and tasks during emergency response to coseismic slope failure, which was further developed into a phased conceptual model to inform future geotechnical response. Review of geotechnical responses to selected historical earthquakes (Northridge, 1994; Chi-Chi, 1999; Wenchuan, 2008) has enabled comparison between international practice and local response strategies, and has emphasised the value of pre-earthquake preparation, indicating the importance of integration of geotechnical response within national emergency management plans. Furthermore, analysis of the CES and international earthquakes has informed pragmatic recommendations for future response to coseismic slope failure. Recommendations for future response to earthquake-induced landslides presented in this thesis include: the integration of post-earthquake geotechnical response with national Civil Defence and Emergency Management; pre-earthquake development of an adaptive management structure and standard slope assessment format for geotechnical response; and emergency management training for geotechnical professionals. Post-earthquake response recommendations include the development of geographic sectors within the area impacted by coseismic slope failure, and the development of a GIS database for analysis and management of data collected during ground reconnaissance. Recommendations provided in this thesis aim to inform development of national guidelines for geotechnical response to earthquake-induced landslides in New Zealand, and prompt debate concerning international best practice.
Christchurch people who have had to battle insurance companies over the repair or rebuild of earthquake damaged homes are welcoming the Labour party's idea of an earthquake court to settle disputes.
Looking from Worcester St
les Mills fitness centre and Calendar Girls.
Research on human behaviour during earthquake shaking has identified three main influences of behaviour: the environment the individual is located immediately before and during the earthquake, in terms of where the individual is and who the individual is with at the time of the earthquake; individual characteristics, such as age, gender, previous earthquake experience, and the intensity and duration of earthquake shaking. However, little research to date has systematically analysed the immediate observable human responses to earthquake shaking, mostly due to data constraints and/or ethical considerations. Research on human behaviour during earthquakes has relied on simulations or post-event, reflective interviews and questionnaire studies, often performed weeks to months or even years following the event. Such studies are therefore subject to limitations such as the quality of the participant's memory or (perceived) realism of a simulation. The aim of this research was to develop a robust coding scheme to analyse human behaviour during earthquake shaking using video footage captured during an earthquake event. This will allow systematic analysis of individuals during real earthquakes using a previously unutilized data source, thus help develop guidance on appropriate protective actions. The coding scheme was developed in a two-part process, combining a deductive and inductive approach. Previous research studies of human behavioral response during earthquake shaking provided the basis for the coding scheme. This was then iteratively refined by applying the coding scheme to a broad range of video footage of people exposed to strong shaking during the Canterbury earthquake sequence. The aim of this was to optimise coding scheme content and application across a broad range of scenarios, and to increase inter-coder reliability. The methodology to code data will enhance objective observation of video footage to allow cross-event analysis and explore (among others): reaction time, patterns of behaviour, and social, environmental and situational influences of behaviour. This can provide guidance for building configuration and design, and evidence-based recommendations for public education about injury-preventing behavioural responses during earthquake shaking.
Looking east up Cashel St
The Foundation facilitates community engagement and communication through their website, providing service delivery, volunteer co-ordination and service to assist with the rebuild of Christchurch and Canterbury following the earthquakes of 2010 and 2011.
People have written messages and signed their names on the stones
Fifteen hundred people in Christchurch are without power tonight and more than a hundred homes evacuated after a 'once in a hundred year flood'.