Search

found 13 results

Images, UC QuakeStudies

A proposed design by John Raven for a new cathedral, tied to a cordon fence. Clarendon Tower can be seen in the background. The photographer comments, "Someone is asking for designs for a new Christchurch Cathedral after it was announced that the old historical building will not be repaired, to be put on the fences through which people can see the de-construction of the old one. This design looks a great one to me".

Videos, UC QuakeStudies

A video of architect Shigeru Ban overseeing the construction of the cardboard beams which will be used to build the Transitional Cathedral on Hereford Street. The video includes an interview with Ban about the beams, and the ways that the design has changed since the construction started.

Videos, UC QuakeStudies

A video montage of LUXCITY, a city of lights that existed for one night on Saturday 20 October 2012. LUXCITY was the main event of FESTA 2012 and included 16 interactive installations, designed and fabricated by architecture and design students from across New Zealand. The film depicts the construction and set up, through to the public event on Saturday night.

Research papers, University of Canterbury Library

Earthquake Engineering is facing an extraordinarily challenging era, the ultimate target being set at increasingly higher levels by the demanding expectations of our modern society. The renewed challenge is to be able to provide low-cost, thus more widely affordable, high-seismic-performance structures capable of sustaining a design level earthquake with limited or negligible damage, minimum disruption of business (downtime) or, in more general terms, controllable socio-economical losses. The Canterbury earthquakes sequence in 2010-2011 has represented a tough reality check, confirming the current mismatch between societal expectations over the reality of seismic performance of modern buildings. In general, albeit with some unfortunate exceptions, modern multi-storey buildings performed as expected from a technical point of view, in particular when considering the intensity of the shaking (higher than new code design) they were subjected to. As per capacity design principles, plastic hinges formed in discrete regions, allowing the buildings to sway and stand and people to evacuate. Nevertheless, in many cases, these buildings were deemed too expensive to be repaired and were consequently demolished. Targeting life-safety is arguably not enough for our modern society, at least when dealing with new building construction. A paradigm shift towards damage-control design philosophy and technologies is urgently required. This paper and the associated presentation will discuss motivations, issues and, more importantly, cost-effective engineering solutions to design buildings capable of sustaining low-level of damage and thus limited business interruption after a design level earthquake. Focus will be given to the extensive research and developments in jointed ductile connections based upon controlled rocking & dissipating mechanisms for either reinforced concrete and, more recently, laminated timber structures. An overview of recent on-site applications of such systems, featuring some of the latest technical solutions developed in the laboratory and including proposals for the rebuild of Christchurch, will be provided as successful examples of practical implementation of performance-based seismic design theory and technology.

Images, Alexander Turnbull Library

Shows Bishop Victoria Matthews reading a brochure offering cheap deals for cathedrals and their various accoutrements. Context: refers to the debate about the fate of the Christchurch Cathedral. Bishop Victoria Matthews is in favour of demolishing the cathedral to a certain safe level. The lobby for saving the cathedral, wrecked by the earthquakes of 2010 and 2011, is very strong. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

High-Force-to-Volume lead dampers (HF2V) have been recently developed through an experimental research program at University of Canterbury – New Zealand. Testing of the device and applications on beam column joints have demonstrated stable hysteretic behaviour with almost no damage. This paper reports testing of HF2V devices with straight, bulged and constricted shaft configurations subjected to velocities of 0.15 - 5.0mm/s. The effect of the shaft configuration on the hysteresis loop shape, design relationships and the effect of the velocity on the resistive force of the device are described. Results show that hysteresis loop shape of the device is almost square regardless of the shaft configuration, and that devices are characterized by noticeable velocity dependence in the range of 0.15-1.0mm/s.

Research papers, The University of Auckland Library

During the Christchurch earthquake of February 2011, several midrise buildings of Reinforced Concrete Masonry (RCM) construction achieved performance levels in the range of life safety to near collapse levels. These buildings were subjected to seismic demands higher than the building code requirements of the time and higher than the current New Zealand Loadings Standard (NZS-1170.5:2004). Structural damage to these buildings has been documented and is currently being studied to establish lessons to be learned from their performance and how to incorporate these lessons into future RCM design and construction practices. This paper presents a case study of a six story RCM building deemed to have reached the near collapse performance level. The RCM walls on the 2nd floor failed due to toe crushing reducing the building’s lateral resistance in the east-west direction. A nonlinear dynamic analysis on a 3D model was conducted to simulate the development of the governing failure mechanism. Preliminary analysis results show that the damaged walls were initially under large compression forces from gravity loads which caused increase in their lateral strength and reduced their ductility. After toe crushing failure developed, axial instability of the model was prevented by a redistribution of gravity loads.