A prominent Christchurch property investor says the Government's anchor projects meant to help rebuild the city faster, has instead slowed it down.
After the 2011 earthquake, the Government launched a recovery plan for the CBD, which had 16 anchor projects designed to spur on the rebuild.
However, many have been plagued by delays and are still unfinished.
Property investor Antony Gough told RNZ reporter Anan Zaki that unlike the Government, it was the private sector which ploughed ahead with the rebuild.
As Christchurch prepares to mark 10 years since its deadly earthquake, the impact of that day continues to be felt differently. The less affluent eastern suburbs, which bore the brunt of the damage, continue to lag behind the rest of the city in their recovery. The former dean of Christchurch and fellow east sider, Peter Beck, told Conan Young that while government agencies such as EQC often failed people in their hour of need, what did not fail was the willingness of people to help out their neighbours.
A protest is underway outside insurance company Vero's Christchurch's office, with building owners dismayed to be still fighting for earthquake repairs 10 years on.
The protest was organised by the owners of an 11 unit apartment block in New Brighton, who says Vero is purposefully delaying progress to wear them down.
RNZ's reporter Rachel Graham is at the protest and spoke to Meriana Johnsen
Cantabrians are still surrounded broken buildings and empty spaces on the 10th anniversary of the devastating 22 February 2011 Christchurch earthquake.
The disaster forced 70 percent of the CBD to be demolished.
The Government launched an ambitious recovery plan to help it recover in 2012. The Christchurch Central Recovery Plan, dubbed the "blueprint" would dictate the rebuild of the central city.
To support it, the Government would complete a series of "anchor projects", to encourage investment in the city and make it a more attractive place to live in.
As Anan Zaki reports, the anchor projects appeared to weigh down the progress of the rebuild.
<b>Construction and Demolition (C&D) waste contributes to over 50% of New Zealand’s overall waste. Materials such as timber, plasterboard, and concrete make up 81% of the C&D waste that goes into landfills each year. Alongside this, more than 235 heritage-listed buildings have been demolished in Christchurch since the 2011 earthquakes. This research portfolio aims to find a solution to decrease C&D waste produced by demolishing heritage buildings.</b>
With the recent announcement of The Cathedral of the Blessed Sacrament’s demolition, this will be another building added to the list of lost heritage in Christchurch. This research portfolio aims to bridge the relationship between heritage and waste through the recycling and reuse of the demolished materials, exploring the idea that history and heritage are preserved through building material reuse.
This research portfolio mainly focuses on reducing construction and demolition waste in New Zealand, using the design of a new Catholic Cathedral as a vessel. This thesis will challenge how the construction and design industry deals with the demolition of heritage buildings and their contribution to New Zealand’s waste. It aims to explore the idea of building material reuse not only to reduce waste but also to retain the history and heritage of the demolished building within the materials.
Glazing systems are non-structural elements in a building that, more often than not, appear to be given little consideration in seismic design. Recent experimental work into glazing systems at the University of Canterbury, however, has shown that glazing systems can be very susceptible to serviceability damage, defined as loss of water-tightness. The focus of this paper is to highlight the difference in vulnerability of standard and seismic glazing systems and consider the implications of this for future repair costs and losses. The paper first describes the damage states chosen for glazing units according to the repair strategies required and expected repair costs. This includes three damage states: DS1: Water Leakage, DS2: Gasket Failure and DS3: Frame/Glass Failure. Implementing modern performance-based earthquake engineering, the paper proceeds to highlight a case study comparing costs and expected losses of a standard glazing unit and a seismic glazing unit installed on a case study building. It is shown that the use of seismic glazing units is generally beneficial over time, due to the early onset of serviceability damage in standard glazing units. Finally, the paper provides suggestions for designers aimed at reducing costs related to earthquake induced repairs of glazing.
After lengthy construction and Covid-19 delays, a centrepiece in Christchurch's earthquake rebuild will finally open its doors today. The $475 million convention centre called Te Pae is already booked to host 150 events next year, but they're not expected to be money-makers. Reporter Jean Edwards took a tour.
This study analyses the Earthquake Commission’s (EQC) insurance claims database to investigate the influence of seismic intensity and property damage resulting from the Canterbury Earthquake Sequence (CES) on the repair costs and claim settlement duration for residential buildings. Firstly, the ratio of building repair cost to its replacement cost was expressed as a Building Loss Ratio (BLR), which was further extended to Regional Loss Ratio (RLR) for greater Christchurch by multiplying the average of all building loss ratios with the proportion of building stock that lodged an insurance claim. Secondly, the total time required to settle the claim and the time taken to complete each phase of the claim settlement process were obtained. Based on the database, the regional loss ratio for greater Christchurch for three events producing shakings of intensities 6, 7, and 8 on the modified Mercalli intensity scale were 0.013, 0.066, and 0.171, respectively. Furthermore, small (less than NZD15,000), medium (between NZD15,000 and NZD100,000), and large (more than NZD100,000) claims took 0.35-0.55, 1.95-2.45, and 3.35-3.85 years to settle regardless of the building’s construction period and earthquake intensities. The number of claims was also disaggregated by various building characteristics to evaluate their relative contribution to the damage and repair costs.
This study analyses the success and limitations of the recovery process following the 2010–11 earthquake sequence in Christchurch, New Zealand. Data were obtained from in-depth interviews with 32 relocated households in Christchurch, and from a review of recovery policies implemented by the government. A top-down approach to disaster recovery was evident, with the creation of multiple government agencies and processes that made grassroots input into decision-making difficult. Although insurance proceeds enabled the repair and rebuilding of many dwellings, the complexity and adversarial nature of the claim procedures also impaired recovery. Householders’ perceptions of recovery reflected key aspects of their post-earthquake experiences (e.g. the housing offer they received, and the negotiations involved), and the outcomes of their relocation (including the value of the new home, their subjective well-being, and lifestyle after relocation). Protracted insurance negotiations, unfair offers and hardships in post-earthquake life were major challenges to recovery. Less-thanfavourable recovery experiences also transformed patterns of trust in local communities, as relocated householders came to doubt both the government and private insurance companies’ ability to successfully manage a disaster. At the same time, many relocated households expressed trust in their neighbours and communities. This study illuminates how government policies influence disaster recovery while also suggesting a need to reconsider centralised, top-down approaches to managing recovery.
The Aromaunga Baxters Flowers nursery in Heathcote, Christchurch sits right above the point where the earthquake struck on 22 February 2011. The greenhouses on the steep slopes of the Port Hills, as well as a big old villa and other brick buildings were badly damaged. Ten years on co-owner John Baxter says the earthquake damage is still being repaired, but sales have been boosted by a lack of imported flowers due to Covid-19 restrictions.
As we approach the tenth anniversary of the Christchurch earthquake there are renewed calls for an inquiry into how Southern Response dealt with Canterbury earthquake claimants. Last year the government set up a support package for those who were short changed by Southern Response for their earthquake repairs. It came after a landmark High Court case found Southern Response misled and deceived Karl and Alison Dodds. Insurance claimants advocate, Ali Jones, says ten years on, lessons haven't been learned from how people were treated by Southern Response. She told RNZ reporter Sally Murphy that dealing with them is hell.
The David and Goliath battle over a heritage building sitting in the way of a planned $473 million dollar, multi-use arena for Christchurch has ended up in court. The 25,000-seated, roofed arena is the final anchor project for the Christchurch rebuild and will be designed to host everything from All Blacks tests to big concerts. But sitting on the edge of the site, at 212 Madras Street, is the NG Building, a 115-year old warehouse that's home to a number of creative businesses. It escaped the worst of the 2011 earthquake and was strengthened by its owners: Roland Logan and Sharon Ng. They say they were told in 2013 the building could be incorporated into the arena's design, and are at loggerheads over its compulsory acquisition. Last week they were at the High Court seeking an injunction that would allow them to temporarily maintain ownership of the building, and that decision was released yesterday - and upheld. Roland joins Kathryn to discuss why they hope the building can be saved.
In this thesis, focus is given to develop methodologies for rapidly estimating specific components of loss and downtime functions. The thesis proposes methodologies for deriving loss functions by (i) considering individual component performance; (ii) grouping them as per their performance characteristics; and (iii) applying them to similar building usage categories. The degree of variation in building stock and understanding their characteristics are important factors to be considered in the loss estimation methodology and the field surveys carried out to collect data add value to the study. To facilitate developing ‘downtime’ functions, this study investigates two key components of downtime: (i) time delay from post-event damage assessment of properties; and (ii) time delay in settling the insurance claims lodged. In these two areas, this research enables understanding of critical factors that influence certain aspects of downtime and suggests approaches to quantify those factors. By scrutinising the residential damage insurance claims data provided by the Earthquake Commission (EQC) for the 2010- 2011 Canterbury Earthquake Sequence (CES), this work provides insights into various processes of claims settlement, the time taken to complete them and the EQC loss contributions to building stock in Christchurch city and Canterbury region. The study has shown diligence in investigating the EQC insurance claim data obtained from the CES to get new insights and build confidence in the models developed and the results generated. The first stage of this research develops contribution functions (probabilistic relationships between the expected losses for a wide range of building components and the building’s maximum response) for common types of claddings used in New Zealand buildings combining the probabilistic density functions (developed using the quantity of claddings measured from Christchurch buildings), fragility functions (obtained from the published literature) and cost functions (developed based on inputs from builders) through Monte Carlo simulations. From the developed contribution functions, glazing, masonry veneer, monolithic and precast concrete cladding systems are found to incur 50% loss at inter-storey drift levels equal to 0.027, 0.003, 0.005 and 0.011, respectively. Further, the maximum expected cladding loss for glazing, masonry veneer, monolithic, precast concrete cladding systems are found to be 368.2, 331.9, 365.0, and 136.2 NZD per square meter of floor area, respectively. In the second stage of this research, a detailed cost breakdown of typical buildings designed and built for different purposes is conducted. The contributions of structural and non- structural components to the total building cost are compared for buildings of different usages, and based on the similar ratios of non-structural performance group costs to the structural performance group cost, four-building groups are identified; (i) Structural components dominant group: outdoor sports, stadiums, parkings and long-span warehouses, (ii) non- structural drift-sensitive components dominant group: houses, single-storey suburban buildings (all usages), theatres/halls, workshops and clubhouses, (iii) non-structural acceleration- sensitive components dominant group: hospitals, research labs, museums and retail/cold stores, and (iv) apartments, hotels, offices, industrials, indoor sports, classrooms, devotionals and aquariums. By statistically analysing the cost breakdowns, performance group weighting factors are proposed for structural, and acceleration-sensitive and drift-sensitive non-structural components for all four building groups. Thus proposed building usage groupings and corresponding weighting factors facilitate rapid seismic loss estimation of any type of building given the EDPs at storey levels are known. A model for the quantification of post-earthquake inspection duration is developed in the third stage of this research. Herein, phase durations for the three assessment phases (one rapid impact and two rapid building) are computed using the number of buildings needing inspections, the number of engineers involved in inspections and a phase duration coefficient (which considers the median building inspection time, efficiency of engineer and the number of engineers involved in each assessment teams). The proposed model can be used: (i) by national/regional authorities to decide the length of the emergency period following a major earthquake, and estimate the number of engineers required to conduct a post-earthquake inspection within the desired emergency period, and (ii) to quantify the delay due to inspection for the downtime modelling framework. The final stage of this research investigates the repair costs and insurance claim settlement time for damaged residential buildings in the 2010-2011 Canterbury earthquake sequence. Based on the EQC claim settlement process, claims are categorized into three groups; (i) Small Claims: claims less than NZD15,000 which were settled through cash payment, (ii) Medium Claims: claims less than NZD100,000 which were managed through Canterbury Home Repair Programme (CHRP), and (iii) Large Claims: claims above NZD100,000 which were managed by an insurance provider. The regional loss ratio (RLR) for greater Christchurch for three events inducing shakings of approximate seismic intensities 6, 7, and 8 are found to be 0.013, 0.066, and 0.171, respectively. Furthermore, the claim duration (time between an event and the claim lodgement date), assessment duration (time between the claim lodgement day and the most recent assessment day), and repair duration (time between the most recent assessment day and the repair completion day) for the insured residential buildings in the region affected by the Canterbury earthquake sequence is found to be in the range of 0.5-4 weeks, 1.5- 5 months, and 1-3 years, respectively. The results of this phase will provide useful information to earthquake engineering researchers working on seismic risk/loss and insurance modelling.
Low Damage Seismic Design (LDSD) guidance material being developed by Engineering NZ is considering a design drift limit for multi-storey buildings of 0.5% at a new damage control limit state (DCLS). The impact of this new design requirement on the expected annual loss due to repair costs is investigated for a four-storey office building with reinforced concrete walls located in Christchurch. The LDSD guidance material aims to reduce the expected annual loss of complying buildings to below 0.1% of building replacement cost. The research tested this expectation. Losses were estimated in accordance with FEMA P58, using building responses from non-linear time history analyses (performed with OpenSees using lumped plasticity models). The equivalent static method, in line with NZS 1170.5 and NZS 3101, was used to design the building to LDSD specifications, representing a future state-of-practice design. The building designed to low-damage specification returned an expected annual loss of 0.10%, and the building designed conventionally returned an expected annual loss of 0.13%. Limitations with the NZS 3101 method for determining wall stiffness were identified, and a different method acknowledging the relationship between strength and stiffness was used to redesign the building. Along with improving this design assumption, the study finds that LDSD design criteria could be an effective way of limiting damage and losses.