Search

found 7 results

Research papers, University of Canterbury Library

Rapid, reliable information on earthquake-affected structures' current damage/health conditions and predicting what would happen to these structures under future seismic events play a vital role in accelerating post-event evaluations, leading to optimized on-time decisions. Such rapid and informative post-event evaluations are crucial for earthquake-prone areas, where each earthquake can potentially trigger a series of significant aftershocks, endangering the community's health and wealth by further damaging the already-affected structures. Such reliable post-earthquake evaluations can provide information to decide whether an affected structure is safe to stay in operation, thus saving many lives. Furthermore, they can lead to more optimal recovery plans, thus saving costs and time. The inherent deficiency of visual-based post-earthquake evaluations and the importance of structural health monitoring (SHM) methods and SHM instrumentation have been highlighted within this thesis, using two earthquake-affected structures in New Zealand: 1) the Canterbury Television (CTV) building, Christchurch; 2) the Bank of New Zealand (BNZ) building, Wellington. For the first time, this thesis verifies the theoretically- and experimentally validated hysteresis loop analysis (HLA) SHM method for the real-world instrumented structure of the BNZ building, which was damaged severely due to three earthquakes. Results indicate the HLA-SHM method can accurately estimate elastic stiffness degradation for this reinforced concrete (RC) pinched structure across the three earthquakes, which remained unseen until after the third seismic event. Furthermore, the HLA results help investigate the pinching effects on the BNZ building's seismic response. This thesis introduces a novel digital clone modelling method based on the robust and accurate SHM results delivered by the HLA method for physical parameters of the monitored structure and basis functions predicting the changes of these physical parameters due to future earthquake excitations. Contrary to artificial intelligence (AI) based predictive methods with black-box designs, the proposed predictive method is entirely mechanics-based with an explicitly-understandable design, making them more trusted and explicable to stakeholders engaging in post-earthquake evaluations, such as building owners and insurance firms. The proposed digital clone modelling framework is validated using the BNZ building and an experimental RC test structure damaged severely due to three successive shake-table excitations. In both structures, structural damage intensifies the pinching effects in hysteresis responses. Results show the basis functions identified from the HLA-SHM results for both structures under Event 1 can online estimate structural damage due to subsequent Events 2-3 from the measured structural responses, making them valuable tool for rapid warning systems. Moreover, the digital twins derived for these two structures under Event 1 can successfully predict structural responses and damage under Events 2-3, which can be integrated with the incremental dynamic analysis (IDA) method to assess structural collapse and its financial risks. Furthermore, it enables multi-step IDA to evaluate earthquake series' impacts on structures. Overall, this thesis develops an efficient method for providing reliable information on earthquake-affected structures' current and future status during or immediately after an earthquake, considerably guaranteeing safety. Significant validation is implemented against both experimental and real data of RC structures, which thus clearly indicate the accurate predictive performance of this HLA-based method.

Audio, Radio New Zealand

The much loved 'Dux de Lux' pub in Christchurch could be set to open its doors again in the next few years if enough money can be raised to restore it. The building was badly damaged by the earthquake in 2011 and a group looking to rebuild the pub say it could take around 12 million dollars to see it welcoming Cantabrians back. James Stewart of Gemelli Consulting had a yarn with Nathan Rarere about a couple of schemes to raise the money.

Audio, Radio New Zealand

Ravenscar House Museum holds an extraordinary, previously private art collection. The new building has been gifted to Christchurch by art collectors Susan Wakefield and her late husband Jim. The art remains in the ownership of the Ravenscar Trust.  Artists in the collection include Colin McCahon, Bill Sutton and Frances Hodgkins. The treasures were previously in the Wakefield's Christchurch home which suffered irreparable earthquake damage. They're now displayed in the purpose-designed and built Ravenscar House Museum in the city's Arts precinct. The story of the art and artefacts is told in in the book - Ravenscar House: A Biography, written by Christchurch journalist and writer Sally Blundell.  

Audio, Radio New Zealand

It was so nearly lost. As the Christ Church Anglican Cathedral is being rebuilt, historian Edmund Bohan is releasing a history of the distinctive Gothic building. It shows it was controversial even before work started on designing it, let alone building in. From the laying of the foundations to the official opening, it took 40 years, after squabbles over pretty much every aspect of its construction - not to mention the huge problems raising the money to build it in the City Centre. In Heart of the City: The Story of Christchurch's Controversial Cathedral, Edmund is critical of the former Anglican Bishop Victoria Matthews' determination to demolish the badly-damaged cathedral after the Canterbury earthquakes, to replace it with a modern church. And he tells Lynn Freeman he's very much looking forward to seeing the Cathedral restored to its former glory after a lengthy and pricey rebuild. But first he sets the scene. Back in the 1860s, there was controversy over where the cathedral should go, its design, whether it should be in stone or timber - even if there should be a cathedral built at all! Heart of the City: The Story of Christchurch's Controversial Cathedral, by Edmund Bohan is published by Quentin Wilson Publishing.

Research papers, University of Canterbury Library

Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km2 ), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.