Search

found 15 results

Images, eqnz.chch.2010

What I found on a walk around the city Christchurch November 20, 2013 New Zealand. www.isaactheatreroyal.co.nz/ en.wikipedia.org/wiki/2011_Christchurch_earthquake

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-003.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-005.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-007.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-002.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-004.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-008.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-001.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-006.jpg From the collection of Christchurch City Libraries

Research papers, University of Canterbury Library

The level of destruction from the 2011 Christchurch earthquakes led to changes in the New Zealand seismic building code. The destruction showed that the NZ building codes did not fully performed to expectation and needed Improvement to ensure that impact of future earthquakes would be minimised. The building codes have been amended to improve buildings resilience to earthquake and other related extreme loading conditions. Rebuilding Christchurch with the new modifications in the seismic building code comes with its own unique challenges to the entire system. This project investigates the impact of rebuilding Christchurch with the new seismic Building codes in terms of how the new changes affected the building industry and the management of construction.

Images, UC QuakeStudies

A photograph of members of the New Zealand Police using a rescue dog to inspect an earthquake-damaged house in Christchurch. The front and side of the house has collapsed, the bricks and other rubble spilling onto the garden, exposing the rooms inside.

Research papers, University of Canterbury Library

This is a joint Resilience Framework undertaken by the Electrical, Computer and Software Engineering Department of the University of Auckland in association with West Power and Orion networks and partially funded by the New Zealand National Science Challenge and QuakeCoRE. The Energy- Communication research group nearly accomplished two different researches focusing on both asset resilience and system resilience. Asset resilience research which covers underground cables system in Christchurch region is entitled “2010-2011 Canterbury Earthquake Sequence Impact on 11KV Underground Cables” and system resilience research which covers electricity distribution and communication system in West Coast region is entitled “NZ Electricity Distribution Network Resilience Assessment and Restoration Models following Major Natural Disturbance“. As the fourth milestone of the aforementioned research project, the latest outcome of both projects has been socialised with the stakeholders during the Cigre NZ 2019 Forum.

Research papers, Victoria University of Wellington

The Canterbury earthquake sequence (2010-2011) was the most devastating catastrophe in New Zealand‘s modern history. Fortunately, in 2011 New Zealand had a high insurance penetration ratio, with more than 95% of residences being insured for these earthquakes. This dissertation sheds light on the functions of disaster insurance schemes and their role in economic recovery post-earthquakes.  The first chapter describes the demand and supply for earthquake insurance and provides insights about different public-private partnership earthquake insurance schemes around the world.  In the second chapter, we concentrate on three public earthquake insurance schemes in California, Japan, and New Zealand. The chapter examines what would have been the outcome had the system of insurance in Christchurch been different in the aftermath of the Canterbury earthquake sequence (CES). We focus on the California Earthquake Authority insurance program, and the Japanese Earthquake Reinsurance scheme. Overall, the aggregate cost of the earthquake to the New Zealand public insurer (the Earthquake Commission) was USD 6.2 billion. If a similar-sized disaster event had occurred in Japan and California, homeowners would have received only around USD 1.6 billion and USD 0.7 billion from the Japanese and Californian schemes, respectively. We further describe the spatial and distributive aspects of these scenarios and discuss some of the policy questions that emerge from this comparison.  The third chapter measures the longer-term effect of the CES on the local economy, using night-time light intensity measured from space, and focus on the role of insurance payments for damaged residential property during the local recovery process. Uniquely for this event, more than 95% of residential housing units were covered by insurance and almost all incurred some damage. However, insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery; and that insurance payments contributed significantly to the process of local economic recovery after the earthquake. Yet, delayed payments were less affective in assisting recovery and cash settlement of claims were more effective than insurance-managed repairs.  After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner‘s insurance. Most people chose the second option. Using data from LINZ combined with data from Stats NZ, the fourth chapter empirically investigates what led people to choose this second option, and how peer effect influenced the homeowners‘ choices.  Due to climate change, public disclosure of coastal hazard information through maps and property reports have been used more frequently by local government. This is expected to raise awareness about disaster risks in local community and help potential property owners to make informed locational decision. However, media outlets and business sector argue that public hazard disclosure will cause a negative effect on property value. Despite this opposition, some district councils in New Zealand have attempted to implement improved disclosure. Kapiti Coast district in the Wellington region serves as a case study for this research. In the fifth chapter, we utilize the residential property sale data and coastal hazard maps from the local district council. This study employs a difference-in-difference hedonic property price approach to examine the effect of hazard disclosure on coastal property values. We also apply spatial hedonic regression methods, controlling for coastal amenities, as our robustness check. Our findings suggest that hazard designation has a statistically and economically insignificant impact on property values. Overall, the risk perception about coastal hazards should be more emphasized in communities.

Research papers, Victoria University of Wellington

Following devastating earthquakes in 2010 and 2011 in Christchurch, there is an opportunity to use sustainable urban design variables to redevelop the central city in order to address climate change concerns and reduce CO₂ emissions from land transport. Literature from a variety of disciplines establishes that four sustainable urban design variables; increased density, mixed-use development, street layout and city design, and the provision of sustainable public transport, can reduce car dependency and vehicle kilometres travelled within urban populations- widely regarded as indicators of the negative environmental effects of transport.  The key question for the research is; to what extent has this opportunity been seized by NZ’s Central Government who are overseeing the central city redevelopment? In order to explore this question the redevelopment plans for the central city of Christchurch are evaluated against an adapted urban design matrix to determine whether a reduction in CO₂ emissions from land transport is likely to be achieved through their implementation. Data obtained through interviews with experts is used to further explore the extent to which sustainable urban design variables can be employed to enhance sustainability and reduce CO₂ emissions.  The analysis of this data shows that the four urban design variables will feature in the Central Government’s redevelopment plans although the extent to which they are employed and their likely success in reducing CO₂ emissions will vary. Ultimately, the opportunity to redevelop the central city of Christchurch to reduce CO₂ emissions from land transport will be undermined due to timeframe, co-ordination, and leadership barriers.