Search

found 6 results

Audio, Radio New Zealand

Building plans signed off by the Christchurch City Council show one of its own structural engineers was involved in the design of a new multistorey building that is unstable. The eight-storey office building at 230 High Street is off-limits as it is too weak and might 'rupture' in an earthquake. But the council insists the planning documents are wrong and its engineer had only a minor role. Phil Pennington reports.

Audio, Radio New Zealand

A woman badly injured in the Christchurch earthquake is astonished a new building in the city has been found to have serious seismic flaws. The empty new office building at 230 High Street has multiple problems in its earthquake design that the city council was warned about almost two years ago. Construction of the seven-storey building continued even after those warnings in December 2017. Susie Ferguson speaks to University of Canterbury lecturer Ann Brower, who was crushed after falling masonry fell on her bus during the February twenty-second 2011 earthquake.

Audio, Radio New Zealand

A new office building in central Christchurch has multiple flaws in its earthquake design that the city council was warned about almost two years ago. Construction of the seven-storey building above the busy shopping precinct at 230 High Street, continued even after those warnings in December 2017. Three leading engineering firms have found critical faults - the latest are detailed in a Government-ordered report that's been leaked to RNZ. Phil Pennington joins Corin Dann with the details.

Audio, Radio New Zealand

Hon RUTH DYSON to the Minister for Greater Christchurch Regeneration: What progress has been made on the Crown’s Global Settlement with the Christchurch City Council for costs flowing from the Canterbury earthquake sequence? Hon PAUL GOLDSMITH to the Minister of Finance: Does he stand by all of his policies, statements, and actions? Hon JUDITH COLLINS to the Minister of Housing and Urban Development: Does he stand by his statement in response to a question on if he would meet his commitment to be a keynote speaker at the KiwiBuild summit on 24 June, “No, because I have two papers at Cabinet”, and did he take two papers to Cabinet on 24 June? GARETH HUGHES to the Minister of State Services: Does he support measuring and improving the energy efficiency of Government buildings, both leased and owned? Hon MICHAEL WOODHOUSE to the Minister of Health: Does he stand by his statement yesterday that “Yes, that will mean that we will have deficits that we wouldn’t want to see. That member and his Government under-invested in health for nine long years, and we will be investing ourselves for quite a period to set that right”; if so, when will he “set that right”? Dr DUNCAN WEBB to the Minister of Justice: What recent announcements has he made regarding community law centres? CHRIS BISHOP to the Minister of Transport: What will the percentage increase in the fuel excise duty and accompanying road-user charges be on Monday, 1 July, and what will be the total revenue raised from this increase? Hon TIM MACINDOE to the Minister for ACC: Does he stand by all of his answers during the Vote Labour Market Estimates hearing at the Education and Workforce Committee meeting on 12 June? Dr LIZ CRAIG to the Minister of Health: What, if anything, is the Government doing to better support the wellbeing of parents with mental health and addiction needs? Hon LOUISE UPSTON to the Minister for Women: How can she be responsible for eliminating the gender pay gap when the Ministry for Women’s gender pay gap has gone from 5.6 percent in favour of women to 6 percent in favour of men? JONATHAN YOUNG to the Minister of Energy and Resources: Does she stand by all her statements, policies, and actions? ANAHILA KANONGATA'A-SUISUIKI to the Minister for Pacific Peoples: How does Budget 2019 support Pacific peoples in Aotearoa New Zealand?

Research papers, University of Canterbury Library

The use of post-earthquake cordons as a tool to support emergency managers after an event has been documented around the world. However, there is limited research that attempts to understand the use, effectiveness, inherent complexities, impacts and subsequent consequences of cordoning once applied. This research aims to fill that gap by providing a detailed understanding of first, the cordons and associated processes, and their implications in a post-earthquake scenario. We use a qualitative method to understand cordons through case studies of two cities where it was used in different temporal and spatial scales: Christchurch (2011) and Wellington (Kaikōura earthquake 2016), New Zealand. Data was collected through 21 expert interviews obtained through purposive and snowball sampling of key informants who were directly or indirectly involved in a decision-making role and/or had influence in relation to the cordoning process. The participants were from varying backgrounds and roles i.e. emergency managers, council members, business representatives, insurance representatives, police and communication managers. The data was transcribed, coded in Nvivo and then grouped based on underlying themes and concepts and then analyzed inductively. It is found that cordons are used primarily as a tool to control access for the purpose of life safety and security. But cordons can also be adapted to support recovery. Broadly, it can be synthesized and viewed based on two key aspects, ‘decision-making’ and ‘operations and management’, which overlap and interact as part of a complex system. The underlying complexity arises in large part due to the multitude of sectors it transcends such as housing, socio-cultural requirements, economics, law, governance, insurance, evacuation, available resources etc. The complexity further increases as the duration of cordon is extended.

Research papers, The University of Auckland Library

The supply of water following disasters has always been of significant concern to communities. Failure of water systems not only causes difficulties for residents and critical users but may also affect other hard and soft infrastructure and services. The dependency of communities and other infrastructure on the availability of safe and reliable water places even more emphasis on the resilience of water supply systems. This thesis makes two major contributions. First, it proposes a framework for measuring the multifaceted resilience of water systems, focusing on the significance of the characteristics of different communities for the resilience of water supply systems. The proposed framework, known as the CARE framework, consists of eight principal activities: (1) developing a conceptual framework; (2) selecting appropriate indicators; (3) refining the indicators based on data availability; (4) correlation analysis; (5) scaling the indicators; (6) weighting the variables; (7) measuring the indicators; and (8) aggregating the indicators. This framework allows researchers to develop appropriate indicators in each dimension of resilience (i.e., technical, organisational, social, and economic), and enables decision makers to more easily participate in the process and follow the procedure for composite indicator development. Second, it identifies the significant technical, social, organisational and economic factors, and the relevant indicators for measuring these factors. The factors and indicators were gathered through a comprehensive literature review. They were then verified and ranked through a series of interviews with water supply and resilience specialists, social scientists and economists. Vulnerability, redundancy and criticality were identified as the most significant technical factors affecting water supply system robustness, and consequently resilience. These factors were tested for a scenario earthquake of Mw 7.6 in Pukerua Bay in New Zealand. Four social factors and seven indicators were identified in this study. The social factors are individual demands and capacities, individual involvement in the community, violence level in the community, and trust. The indicators are the Giving Index, homicide rate, assault rate, inverse trust in army, inverse trust in police, mean years of school, and perception of crime. These indicators were tested in Chile and New Zealand, which experienced earthquakes in 2010 and 2011 respectively. The social factors were also tested in Vanuatu following TC Pam, which hit the country in March 2015. Interestingly, the organisational dimension contributed the largest number of factors and indicators for measuring water supply resilience to disasters. The study identified six organisational factors and 17 indicators that can affect water supply resilience to disasters. The factors are: disaster precaution; predisaster planning; data availability, data accessibility and information sharing; staff, parts, and equipment availability; pre-disaster maintenance; and governance. The identified factors and their indicators were tested for the case of Christchurch, New Zealand, to understand how organisational capacity affected water supply resilience following the earthquake in February 2011. Governance and availability of critical staff following the earthquake were the strongest organisational factors for the Christchurch City Council, while the lack of early warning systems and emergency response planning were identified as areas that needed to be addressed. Economic capacity and quick access to finance were found to be the main economic factors influencing the resilience of water systems. Quick access to finance is most important in the early stages following a disaster for response and restoration, but its importance declines over time. In contrast, the economic capacity of the disaster struck area and the water sector play a vital role in the subsequent reconstruction phase rather than in the response and restoration period. Indicators for these factors were tested for the case of the February 2011 earthquake in Christchurch, New Zealand. Finally, a new approach to measuring water supply resilience is proposed. This approach measures the resilience of the water supply system based on actual water demand following an earthquake. The demand-based method calculates resilience based on the difference between water demand and system capacity by measuring actual water shortage (i.e., the difference between water availability and demand) following an earthquake.