Search

found 12 results

Research papers, University of Canterbury Library

This paper presents an overview of the soil profile characteristics at strong motion station (SMS) locations in the Christchurch Central Business District (CBD) based on recently completed geotechnical site investigations. Given the variability of Christchurch soils, detailed investigations were needed in close vicinity to each SMS. In this regard, CPT, SPT and borehole data, and shear wave velocity (Vs) profiles from surface wave dispersion data in close vicinity to the SMSs have been used to develop detailed representative soil profiles at each site and to determine site classes according to the New Zealand standard NZS1170.5. A disparity between the NZS1170.5 site classes based on Vs and SPT N60 investigation techniques is highlighted, and additional studies are needed to harmonize site classification based on these techniques. The short period mode of vibration of soft deposits above gravels, which are found throughout Christchurch, are compared to the long period mode of vibration of the entire soil profile to bedrock. These two distinct modes of vibration require further investigation to determine their impact on the site response. According to current American and European approaches to seismic site classification, all SMSs were classified as problematic soil sites due to the presence of liquefiable strata, soils which are not directly accounted for by the NZS1170.5 approach.

Research papers, University of Canterbury Library

We examined changes in psychological distress experienced by residents of Christchurch following two catastrophic earthquakes in late 2010 and early 2011, using data from the New Zealand Attitudes and Values Study (NZAVS), a national probability panel study of New Zealand adults. Analyses focused on the 267 participants (172 women, 95 men) who were living in central Christchurch in 2009 (i.e., before the Christchurch earthquakes), and who also provided complete responses to our yearly panel questionnaire conducted in late 2010 (largely between the two major earthquakes), late 2011, and late 2012. Levels of psychological distress were similar across the different regions of central Christchurch immediately following the September 2010 earthquake, and remained comparable across regions in 2011. By late 2012, however, average levels of psychological distress in the regions had diverged as a function of the amount of property damage experienced within each given region. Specifically, participants in the least damaged region (i.e., the Fendalton-Waimairi and Riccarton-Wigram wards) experienced greater drops in psychological distress than did those in the moderately damaged region (i.e., across the Spreydon-Heathcote and Hagley- Ferrymead wards). However, the level of psychological distress reported by participants in the most damaged region (i.e., across Shirley-Papanui and Burwood-Pegasus) were not significantly different to those in the least damaged region of central Christchurch. These findings suggest that different patterns of psychological recovery emerged across the different regions of Christchurch, with the moderately damaged region faring the worst, but only after the initial shock of the destruction had passed.

Research papers, University of Canterbury Library

There has been little discussion of what archival accounting evidence can contribute to an understanding of a society’s response to a natural disaster. This article focuses on two severe earthquakes which struck New Zealand in 1929 and 1931 and makes two main contributions to accounting history. First, by discussing evidence from archival sources, it contributes to the literature on accounting in a disaster. This provides a basis for future theory building and for future comparative research related to the response to more recent natural disasters such as the 2010–11 Canterbury earthquakes. Secondly, it questions the conclusions of recently published research concerning the role of central and local government in this and recent earthquakes.

Research papers, University of Canterbury Library

This paper presents an examination of ground motion observations from 20 near-source strong motion stations during the most significant 10 events in the 2010-2011 Canterbury earthquake to examine region-specific systematic effects based on relaxing the conventional ergodic assumption. On the basis of similar site-to-site residuals, surfical geology, and geographical proximity, 15 of the 20 stations are grouped into four sub-regions: the Central Business District; and Western, Eastern, and Northern suburbs. Mean site-to-site residuals for these sub-regions then allows for the possibility of non-ergodic ground motion prediction over these sub-regions of Canterbury, rather than only at strong motion station locations. The ratio of the total non-ergodic vs. ergodic standard deviation is found to be, on average, consistent with previous studies, however it is emphasized that on a site-by-site basis the non-ergodic standard deviation can easily vary by ±20%.

Research papers, University of Canterbury Library

Local independent radio stations in Christchurch, New Zealand, had their operations severely disrupted by major earthquakes in September 2010 and February 2011. This article examines the experiences of three radio stations that were shut out of their central city premises by the cordon drawn around the city after the 22 February quake. One of the stations continued broadcasting automatically, while the others were unable to fully get back on air for several weeks afterwards. All of the stations had to manage access to workspaces, the emotional needs of staff and volunteers, the technical ability to broadcast, and the need to adapt content appropriately when back on air. For the locally based radio managers decisions had to be made about the future of the stations in a time of significant emotional, physical, and geological upheaval. The article explores how these radio stations were disrupted by the earthquake, and how they returned to air through new combinations and interconnections of people, workspace, technology, content and transmission.

Research papers, University of Canterbury Library

The Townsend Observatory is located in the Arts Centre of Christchurch, in what used to be Canterbury College (now University of Canterbury). The Townsend telescope itself is a historic 6-inch Cooke refractor built in 1864 for early Christchurch colonist, Mr James Townsend, and gifted by him to Christchurch College in 1891. At the same time, the Canterbury Astronomical Society handed over its funds to the College to help erect an observatory. The College used this, and money it had set aside for a medical school, to build a biological laboratory with an attached observatory tower, which was completed in 1896. The Biology Building and Observatory Tower was the last major design by architect Benjamin Mountfort. Mr Walter Kitson was appointed custodian of the telescope and regular public open nights commenced. and continued until 2010, with the telescope being operated by students of the Department of Physics and Astronomy, University of Canterbury. The Observatory Tower was badly damaged in the 4 September 2010 earthquake and collapsed in the 22 February 2011 earthquake. The telescope was badly damaged by the collapse, but, amazingly, the optics were found entirely intact. The Department of Physics and Astronomy plans to restore the Townsend Telescope so that it can be returned to a replica Observatory Tower in its central city home, enabling the people of Christchurch, and visitors, to enjoy views of the night sky through this beautiful and historic telescope once again.

Research papers, University of Canterbury Library

Following the 2010-2011 Canterbury (New Zealand) earthquake sequence, lightly reinforced wall structures in the Christchurch central business district were observed to form undesirable crack patterns in the plastic hinge region, while yield penetration either side of cracks and into development zones was less than predicted using empirical expressions. To some extent this structural behaviour was unexpected and has therefore demonstrated that there may be less confidence in the seismic performance of conventionally designed reinforced concrete (RC) structures than previously anticipated. This paper provides an observation-based comparison between the behaviour of RC structural components in laboratory testing and the unexpected structural behaviour of some case study buildings in Christchurch that formed concentrated inelastic deformations. The unexpected behaviour and poor overall seismic performance of ‘real’ buildings (compared to the behaviour of laboratory test specimens) was due to the localization of peak inelastic strains, which in some cases has arguably led to: (i) significantly less ductility capacity; (ii) less hysteretic energy dissipation; and (iii) the fracture of the longitudinal reinforcement. These observations have raised concerns about whether lightly reinforced wall structures can satisfy the performance objective of “Life Safety” at the Ultimate Limit State. The significance of these issues and potential consequences has prompted a review of potential problems with the testing conditions and procedures that are commonly used in seismic experimentations on RC structures. This paper attempts to revisit the principles of RC mechanics, in particular, the influence of loading history, concrete tensile strength, and the quantity of longitudinal reinforcement on the performance of real RC structures. Consideration of these issues in future research on the seismic performance of RC might improve the current confidence levels in newly designed conventional RC structures.

Research papers, University of Canterbury Library

Organisations play a vital role in assisting communities to recover from disasters. They are the key providers of goods and services needed in both response and recovery efforts. They provide the employment which both anchors people to place and supports the taxation base to allow for necessary recovery spending. Finally, organisations are an integral part of much day to day functioning contributing immensely to people’s sense of ‘normality’ and psychological wellbeing. Yet, despite their overall importance in the recovery process, there are significant gaps in our existing knowledge with regard to how organisations respond and recover following disaster. This research fills one part of this gap by examining collaboration as an adaptive strategy enacted by organisations in the Canterbury region of New Zealand, which was heavily impacted by a series of major earthquakes, occurring in 2010 and 2011. Collaboration has been extensively investigated in a variety of settings and from numerous disciplinary perspectives. However, there are few studies that investigate the role of collaborative approaches to support post-disaster business recovery. This study investigates the type of collaborations that have occurred and how they evolved as organisations reacted to the resource and environmental change caused by the disaster. Using data collected through semi-structured interviews, survey and document analysis, a rich and detailed picture of the recovery journey is created for 26 Canterbury organisations including 14 collaborators, six non-traders, five continued traders and one new business. Collaborations included two or more individual businesses collaborating along with two multi-party, place based projects. Comparative analysis of the organisations’ experiences enabled the assessment of decisions, processes and outcomes of collaboration, as well as insight into the overall process of business recovery. This research adopted a primarily inductive, qualitative approach, drawing from both grounded theory and case study methodologies in order to generate theory from this rich and contextually situated data. Important findings include the importance of creating an enabling context which allows organisations to lead their own recovery, the creation of a framework for effective post-disaster collaboration and the importance of considering both economic and other outcomes. Collaboration is found to be an effective strategy enabling resumption of trade at a time when there seemed few other options available. While solving this need, many collaborators have discovered significant and unexpected benefits not just in terms of long term strategy but also with regard to wellbeing. Economic outcomes were less clear-cut. However, with approximately 70% of the Central Business District demolished and rebuilding only gaining momentum in late 2014, many organisations are still in a transition stage moving towards a new ‘normal’.

Research papers, University of Canterbury Library

As the future of the world’s oil reserves becomes progressively more uncertain, it is becoming increasingly important that steps are taken to ensure that there are viable, attractive alternatives to travel by private motor vehicle. As with many of New Zealand’s major urban centres, Christchurch is still exceptionally reliant on private motor vehicles; although a significant proportion of the population indicate that they would like to cycle more, cycling is still an underutilised mode of transport. Following a series of fatal earthquakes that struck the city in 2010 and 2011, there has been the need to significantly redevelop much of the city’s horizontal infrastructure – subsequently providing the perfect platform for significant changes to be made to the road network. Many of the key planning frameworks governing the rebuild process have identified the need to improve Christchurch’s cycling facilities in order to boost cycling numbers and cyclist safety. The importance of considering future growth and travel patterns when planning for transport infrastructure has been highlighted extensively throughout literature. Accordingly, this study sought to identify areas where future cycle infrastructure development would be advantageous based on a number of population and employment projections, and likely future travel patterns throughout the city. Through the use of extensive GIS analysis, future population growth, employment and travel patterns for Christchurch city were examined in order to attain an understanding of where the current proposed major cycleways network could be improved, or extended. A range of data and network analysis were used to derive likely travel patterns throughout Christchurch in 2041. Trips were derived twice, once with a focus on simply finding the shortest route between each origin and destination, and then again with a focus on cyclist safety and areas where cyclists were unlikely to travel. It was found that although the proposed major cycleways network represents a significant step towards improving the cycling environment in Christchurch, there are areas of the city that will not be well serviced by the current proposed network in 2041. These include a number of key residential growth areas such as Halswell, Belfast and Prestons, along with a number of noteworthy key travel zones, particularly in areas close to the central city and key employment areas. Using network analysis, areas where improvements or extensions to the proposed network would be most beneficial were identified, and a number of potential extensions in a variety of areas throughout the city were added to the network of cycle ways. Although it has been found that filling small gaps in the network can have considerable positive outcomes, results from the prioritisation analysis suggested that initially in Christchurch demand is likely to be for more substantial extensions to the proposed major cycleways network.

Research papers, University of Canterbury Library

Following the Mw 6.2 Christchurch Earthquake on 22 February 2011, extensive ground cracking in loessial soils was reported in some areas of the Port Hills, southeast of central Christchurch. This study was undertaken to investigate the mechanisms of earthquake-induced ground damage on the eastern side of the Hillsborough Valley. A zone of extensional cracking up to 40m wide and 600m long was identified along the eastern foot-slope, accompanied by compression features and spring formation at the toe of the slope. An engineering geological and geomorphological model was developed for the eastern Hillsborough Valley that incorporates geotechnical investigation data sourced from the Canterbury Geotechnical Database (CGD), the findings of trenching and seismic refraction surveying carried out for this research, and interpretation of historical aerial photographs. The thickness and extent of a buried peat swamp at the base of the slope was mapped, and found to coincide with significant compression features. Ground cracking was found to have occurred entirely within loess-colluvium and to follow the apices of pre-1920s tunnel-gully fan debris at the southern end of the valley. The ground-cracking on the eastern side of the Hillsborough Valley is interpreted to have formed through tensile failure of the loess-colluvium. Testing was carried out to determine the tensile strength of Port Hills loess colluvium as a function of water content and density, in order to better understand the occurrence and distribution of the observed ground cracking. A comprehensive review of the soil tensile strength testing literature was undertaken, from which a test methodology was developed. Results show remoulded loess-colluvium to possess tensile strength of 7 - 28 kPa across the range of tested moisture contents (10-15%) and dry densities (1650-1900kg/m3). A positive linear relationship was observed between tensile strength and dry density, and a negative linear relationship between moisture content and tensile strength. The observed ground damage and available geotechnical information (inclinometer and piezometer records provided by the Earthquake Commission) were together used to interpret the mechanism(s) of slope movement that occurred in the eastern Hillsborough Valley. The observed ground damage is characteristic of translational movement, but without the development of lateral release scarps, or a basal sliding surface - which was not located during drilling. It is hypothesised that shear displacement has been accommodated by multiple slip surfaces of limited extent within the upper 10m of the slope. Movement has likely occurred within near-saturated colluvial units that have lost strength during earthquake shaking. The eastern Hillsborough Valley is considered to be an ‘incipient translational slide’, as both the patterns of damage and shearing are consistent with the early stages of such slide development. Sliding block analysis was utilised to understand how the eastern Hillsborough Valley may perform in a future large magnitude earthquake. Known cumulative displacements of ~0.3m for eastern Hillsborough Valley during the 2010-2011 Canterbury Earthquake Sequence were compared with modelled slope displacements to back-analyse a lower-bound yield acceleration of 0.2 - 0.25g. Synthetic broadband modelling for future Alpine and Hope Fault earthquakes indicates PGAs of approximately 0.08g for soil sites in the Christchurch area, as such, slope movement is unlikely to be reactivated by an Alpine Fault or Hope Fault earthquake. This does not take into account the possible role of strength loss due to excess pore pressure that may occur during these future events.

Research papers, University of Canterbury Library

When disasters and crises, both man-made and natural, occur, resilient higher education institutions adapt in order to continue teaching and research. This may necessitate the closure of the whole institution, a building and/or other essential infrastructure. In disasters of large scale the impact can be felt for many years. There is an increasing recognition of the need for disaster planning to restructure educational institutions so that they become more resilient to challenges including natural disasters (Seville, Hawker, & Lyttle, 2012).The University of Canterbury (UC) was affected by seismic events that resulted in the closure of the University in September 2010 for 10 days and two weeks at the start of the 2011 academic year This case study research describes ways in which e-learning was deployed and developed by the University to continue and even to improve learning and teaching in the aftermath of a series of earthquakes in 2010 and 2011. A qualitative intrinsic embedded/nested single case study design was chosen for the study. The population was the management, support staff and educators at the University of Canterbury. Participants were recruited with purposive sampling using a snowball strategy where the early key participants were encouraged to recommend further participants. Four sources of data were identified: (1) documents such as policy, reports and guidelines; (2) emails from leaders of the colleges and academics; (3) communications from senior management team posted on the university website during and after the seismic activity of 2010 and 2011; and (4) semi-structured interviews of academics, support staff and members of senior management team. A series of inductive descriptive content analyses identified a number of themes in the data. The Technology Acceptance Model 2 (Venkatesh & Davis, 2000) and the Indicator of Resilience Model (Resilient Organisations, 2012) were used for additional analyses of each of the three cases. Within the University case, the cases of two contrasting Colleges were embedded to produce a total of three case studies describing e-learning from 2000 - 2014. One contrast was the extent of e-learning deployment at the colleges: The College of Education was a leader in the field, while the College of Business and Law had relatively little e-learning at the time of the first earthquake in September 2010. The following six themes emerged from the analyses: Communication about crises, IT infrastructure, Availability of e-learning technologies, Support in the use of e-learning technologies, Timing of crises in academic year and Strategic planning for e-learning. One of the findings confirmed earlier research that communication to members of an organisation and the general public about crises and the recovery from crises is important. The use of communication channels, which students were familiar with and already using, aided the dissemination of the information that UC would be using e-learning as one of the options to complete the academic year. It was also found that e-learning tools were invaluable during the crises and facilitated teaching and learning whilst freeing limited campus space for essential activities and that IT infrastructure was essential to e-learning. The range of e-learning tools and their deployment evolved over the years influenced by repeated crises and facilitated by the availability of centrally located support from the e-Learning support team for a limited set of tools, as well as more localised support and collaboration with colleagues. Furthermore, the reasons and/or rate of e-learning adoption in an educational institution during crises varied with the time of the academic year and the needs of the institution at the time. The duration of the crises also affected the adoption of e-learning. Finally, UC’s lack of an explicit e-learning strategy influenced the two colleges to develop college-specific e-learning plans and those College plans complemented the incorporation of e-learning for the first time in the University’s teaching and learning strategy in 2013. Twelve out of the 13 indicators of the Indicators of Resilience Model were found in the data collected for the study and could be explained using the model; it revealed that UC has become more resilient with e-learning in the aftermath of the seismic activities in 2010 and 2011. The interpretation of the results using TAM2 demonstrated that the adoption of technologies during crises aided in overcoming barriers to learning at the time of the crisis. The recommendations from this study are that in times of crises, educational institutions take advantage of Cloud computing to communicate with members of the institution and stakeholders. Also, that the architecture of a university’s IT infrastructure be made more resilient by increasing redundancy, backup and security, centralisation and Cloud computing. In addition, when under stress it is recommended that new tools are only introduced when they are essential.

Research papers, University of Canterbury Library

In 2010 and 2011 Christchurch, New Zealand experienced a series of earthquakes that caused extensive damage across the city, but primarily to the Central Business District (CBD) and eastern suburbs. A major feature of the observed damage was extensive and severe soil liquefaction and associated ground damage, affecting buildings and infrastructure. The behaviour of soil during earthquake loading is a complex phenomena that can be most comprehensively analysed through advanced numerical simulations to aid engineers in the design of important buildings and critical facilities. These numerical simulations are highly dependent on the capabilities of the constitutive soil model to replicate the salient features of sand behaviour during cyclic loading, including liquefaction and cyclic mobility, such as the Stress-Density model. For robust analyses advanced soil models require extensive testing to derive engineering parameters under varying loading conditions for calibration. Prior to this research project little testing on Christchurch sands had been completed, and none from natural samples containing important features such as fabric and structure of the sand that may be influenced by the unique stress-history of the deposit. This research programme is focussed on the characterisation of Christchurch sands, as typically found in the CBD, to facilitate advanced soil modelling in both res earch and engineering practice - to simulate earthquake loading on proposed foundation design solutions including expensive ground improvement treatments. This has involved the use of a new Gel Push (GP) sampler to obtain undisturbed samples from below the ground-water table. Due to the variable nature of fluvial deposition, samples with a wide range of soil gradations, and accordingly soil index properties, were obtained from the sampling sites. The quality of the samples is comprehensively examined using available data from the ground investigation and laboratory testing. A meta-quality assessment was considered whereby a each method of evaluation contributed to the final quality index assigned to the specimen. The sampling sites were characterised with available geotechnical field-based test data, primarily the Cone Penetrometer Test (CPT), supported by borehole sampling and shear-wave velocity testing. This characterisation provides a geo- logical context to the sampling sites and samples obtained for element testing. It also facilitated the evaluation of sample quality. The sampling sites were evaluated for liquefaction hazard using the industry standard empirical procedures, and showed good correlation to observations made following the 22 February 2011 earthquake. However, the empirical method over-predicted liquefaction occurrence during the preceding 4 September 2010 event, and under-predicted for the subsequent 13 June 2011 event. The reasons for these discrepancies are discussed. The response of the GP samples to monotonic and cyclic loading was measured in the laboratory through triaxial testing at the University of Canterbury geomechanics laboratory. The undisturbed samples were compared to reconstituted specimens formed in the lab in an attempt to quantify the effect of fabric and structure in the Christchurch sands. Further testing of moist tamped re- constituted specimens (MT) was conducted to define important state parameters and state-dependent properties including the Critical State Line (CSL), and the stress-strain curve for varying state index. To account for the wide-ranging soil gradations, selected representative specimens were used to define four distinct CSL. The input parameters for the Stress-Density Model (S-D) were derived from a suite of tests performed on each representative soil, and with reference to available GP sample data. The results of testing were scrutinised by comparing the data against expected trends. The influence of fabric and structure of the GP samples was observed to result in similar cyclic strength curves at 5 % Double Amplitude (DA) strain criteria, however on close inspection of the test data, clear differences emerged. The natural samples exhibited higher compressibility during initial loading cycles, but thereafter typically exhibited steady growth of plastic strain and excess pore water pressure towards and beyond the strain criteria and initial liquefaction, and no flow was observed. By contrast the reconstituted specimens exhibited a stiffer response during initial loading cycles, but exponential growth in strains and associated excess pore water pressure beyond phase-transformation, and particularly after initial liquefaction where large strains were mobilised in subsequent cycles. These behavioural differences were not well characterised by the cyclic strength curve at 5 % DA strain level, which showed a similar strength for both GP samples and MT specimens. A preliminary calibration of the S-D model for a range of soil gradations is derived from the suite of laboratory test data. Issues encountered include the influence of natural structure on the peak-strength–state index relationship, resulting in much higher peak strengths than typically observed for sands in the literature. For the S-D model this resulted in excessive stiffness to be modelled during cyclic mobility, when the state index becomes large momentarily, causing strain development to halt. This behaviour prevented modelling the observed re- sponse of silty sands to large strains, synonymous with “liquefaction”. Efforts to reduce this effect within the current formulation are proposed as well as future research to address this issue.