Search

found 7 results

Research Papers, Lincoln University

This report forms part of a research project examining rural community resilience to natural hazard events, with a particular focus on transient population groups. A preliminary desktop and scoping exercise was undertaken to examine nine communities affected by the Kaikoura earthquake and to identify the variety of transient population groups that are commonly (and increasingly) found in rural New Zealand (see Wilson & Simmons, 2017). From this, four case study communities – Blenheim, Kaikoura, Waiau and St Arnaud – were selected to represent a range of settlement types. These communities varied in respect of social, economic and geographic features, including the presence of particular transient population groups, and earthquake impact. While the 2016 Kaikoura earthquake provided a natural hazard event on which to focus the research, the research interest was in long-term (and broad) community resilience, rather than short-term (and specific) response and recovery actions which occurred post-earthquake.

Research papers, University of Canterbury Library

The level of destruction from the 2011 Christchurch earthquakes led to changes in the New Zealand seismic building code. The destruction showed that the NZ building codes did not fully performed to expectation and needed Improvement to ensure that impact of future earthquakes would be minimised. The building codes have been amended to improve buildings resilience to earthquake and other related extreme loading conditions. Rebuilding Christchurch with the new modifications in the seismic building code comes with its own unique challenges to the entire system. This project investigates the impact of rebuilding Christchurch with the new seismic Building codes in terms of how the new changes affected the building industry and the management of construction.

Research papers, The University of Auckland Library

Livelihood holds the key to a rapid recovery following a large-scale devastating disaster, building its resilience is of paramount importance. While much attention has been given to how to help people who are displaced from their jobs to regain employment, little research on livelihood resilience has been undertaken for those relocated communities following a disaster event. By studying five re-located villages post-2004 Indian Ocean Tsunami in Banda Aceh and Aceh Besar, Indonesia, this research has identified the indicators of livelihood resilience and the critical factors driving it for post-disaster relocated communities. A mixed approach, combining questionnaire surveys, semistructured interviews, and field observations, was used for the collection of data. Housing entitlement, the physical and mental health of residents, access to external livelihood support and the provision of infrastructure and basic services were identified as amongst the most critical indicators that represent the level of livelihood resilience. Early recovery income support, physical and mental health, availability and timeliness of livelihood support, together with cultural sensitivity and governance structure, are amongst the most important factors. Given the nature of resettlement, access to infrastructure, location of relocated sites, the safety of the neighbourhood and the ability to transfer to other jobs/skills also play an important role in establishing sustained employment for relocated communities in Indonesia. Those indicators and factors were synthesised into a framework which was further tested in the recovery of Christchurch, and Kaikoura, New Zealand during their recovery from devastating earthquakes. It is suggested that the framework can be used by government agencies and aid organisations to assess the livelihood resilience of post-disaster relocated communities. This will help better them plan support policies and/or prioritise resilience investment strategies to ensure that the recovery needs of those relocated are best met.

Research Papers, Lincoln University

On 14 November 2016, a magnitude (Mw) 7.8 earthquake struck the small coastal settlement of Kaikōura, Aotearoa-New Zealand. With an economy based on tourism, agriculture, and fishing, Kaikōura was immediately faced with significant logistical, economic, and social challenges caused by damage to critical infrastructure and lifelines, essential to its main industries. Massive landslips cut offroad and rail access, stranding hundreds of tourists, and halting the collection, processing and distribution of agricultural products. At the coast, the seabed rose two metres, limiting harbour-access to high tide, with implications for whale watching tours and commercial fisheries. Throughout the region there was significant damage to homes, businesses, and farmland, leaving owners and residents facing an uncertain future. This paper uses qualitative case study analysis to explore post-quake transformations in a rural context. The aim is to gain insight into the distinctive dynamics of disaster response mechanisms, focusing on two initiatives that have emerged in direct response to the disaster. The first examines the ways in which agriculture, food harvesting, production and distribution are being reimagined with the potential to enhance regional food security. The second examines the rescaling of power in decision-making processes following the disaster, specifically examining the ways in which rural actors are leveraging networks to meet their needs and the consequences of that repositioning on rural (and national) governance arrangements. In these and other ways, the local economy is being revitalised, and regional resilience enhanced through diversification, capitalising not on the disaster but the region's natural, social, and cultural capital. Drawing on insights and experience of local stakeholders, policy- and decision-makers, and community representatives we highlight the diverse ways in which these endeavours are an attempt to create something new, revealing also the barriers which needed to be overcome to reshape local livelihoods. Results reveal that the process of transformation as part of rural recovery must be grounded in the lived reality of local residents and their understanding of place, incorporating and building on regional social, environmental, and economic characteristics. In this, the need to respond rapidly to realise opportunities must be balanced with the community-centric approach, with greater recognition given to the contested nature of the decisions to be made. Insights from the case examples can inform preparedness and recovery planning elsewhere, and provide a rich, real-time example of the ways in which disasters can create opportunities for reimagining resilient futures.

Research papers, University of Canterbury Library

This thesis presents the findings from an experimental programme to determine the performance and behaviour of an integrated building incorporating low damage structural and non-structural systems. The systems investigated included post-tensioned rocking concrete frames, articulated floor solutions, low damage claddings and low damage partition systems. As part of a more general aim to increase the resilience of society against earthquake hazards, more emphasis has been given to damage-control design approaches in research. Multiple low-damage earthquake resistant structural and non-structural systems have emerged that are able to withstand high levels of drift or deflections will little or negligible residual. Dry jointed connections, articulated floor solutions, low damage cladding systems and low damage drywall partitions have all been developed separately and successfully tested. In spite of the extensive research effort and the adoption in practice of the low damage systems, work was required to integrate the systems within one building and verify the constructibility, behaviour and performance of the integrated systems. The objectives of this research were to perform dynamic experimental testing of a building which incorporated the low damage systems and acquire data which could be used to dynamically validate numerical models for each of the systems. A three phase experimental programme was devised and performed to dynamically test a half-scale two storey reinforced concrete building on the University of Canterbury shaking table. The three phases of the programme investigated: The structural system only. The rocking connections were tested as Post-Tensioned only connections and Hybrid connections (including dissipators). Two different articulated floor connections were also investigated. Non-structural systems. The Hybrid building was tested with each non-structural system separately; including low damage claddings, low damage partitions and traditional partitions. The Complete building was tested with Hybrid connections, low damage claddings and low damage partitions all integrated within the test specimen. The building was designed based on a full scale prototype building following the direct displacement based design to reach a peak inter-storey drift of 1.6% in a 1/500 year ground motion for a Wellington site. For each test set up, the test specimen was subjected to a ground motion sequence of 39 single direction ground motions. Through the sequence, both the local and global behaviours of the building and integrated systems were recorded in real time. The test specimen was subjected to over 400 ground motions throughout the testing programme. It sustained no significant damage that required reparations other than crumbling of the grout pads. The average peak inter-storey drifts of the buildings were lower than the design value of 1.6%. The low damage non-structural elements were undamaged in the ground motion sequence. The data acquired from each of the phases was used to successfully validate numerical models for each of the low damage systems included in the research.

Research papers, University of Canterbury Library

Very little research exists on total house seismic performance. This testing programme provides stiffness and response data for five houses of varying ages including contributions of non-structural elements. These light timber framed houses in Christchurch, New Zealand had minor earthquake damage from the 2011 earthquakes and were lateral load tested on site to determine their strength and stiffness, and preliminary damage thresholds. Dynamic characteristics were also investigated. Various loading schemes were utilised including quasi-static loading above the foundation, unidirectional loading through the floor diaphragm, cyclic quasi-static loading and snapback tests. Dynamic analysis on two houses provided the seismic safety levels of post-quake houses with respect to local hazard levels. Compared with New Zealand Building Standards all the tested houses had an excess of strength, damage is a significant consideration in earthquake resilience and was observed in all of the houses. A full size house laboratory test is proposed.

Research papers, University of Canterbury Library

Observations made in past earthquakes, in New Zealand and around the world, have highlighted the vulnerability of non-structural elements such as facades, ceilings, partitions and services. Damage to these elements can be life-threatening or jeopardise egress routes but typically, the main concern is the cost and time associated with repair works. The Insurance Council of New Zealand highlighted the substantial economic losses in recent earthquakes due to poor performance of non-structural elements. Previous inspections and research have attributed the damage to non-structural elements principally to poor coordination, inadequate or lack of seismic restraints and insufficient clearances to cater for seismic actions. Secondary issues of design responsibility, procurement and the need for better alignment of the various Standards have been identified. In addition to the compliance issues, researchers have also demonstrated that current code provisions for non-structural elements, both in New Zealand and abroad, may be inadequate. This paper first reviews the damage observed against the requirements of relevant Standards and the New Zealand Building Code, and it appears that, had the installations been compliant, the cost of repair and business interruption would have been substantially less. The second part of the paper highlights some of the apparent shortcomings with the current design process for non-structural elements, points towards possible alternative strategies and identifies areas where more research is deemed necessary. The challenge of improving the seismic performance of non-structural elements is a complex one across a diverse construction industry. Indications are that the New Zealand construction industry needs to completely rethink the delivery approach to ensure an integrated design, construction and certification process. The industry, QuakeCentre, QuakeCoRE and the University of Canterbury are presently working together to progress solutions. Indications are that if new processes can be initiated, better performance during earthquakes will be achieved while delivering enhanced building and business resilience.